Spaces:
Running
Running
File size: 19,556 Bytes
94e74f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
#!/usr/bin/env python3
"""
PDFOCR - Module for processing PDF files with OCR and extracting structured data.
Provides robust PDF to image conversion before OCR processing.
"""
import json
import os
import tempfile
import logging
from pathlib import Path
from typing import Optional, Dict, List, Union, Tuple, Any
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger("pdf_ocr")
# Import StructuredOCR for OCR processing
from structured_ocr import StructuredOCR
class PDFConversionResult:
"""Class to hold results of PDF to image conversion."""
def __init__(self,
success: bool,
images: List[Path] = None,
error: str = None,
page_count: int = 0,
temp_files: List[str] = None):
"""Initialize the conversion result.
Args:
success: Whether the conversion was successful
images: List of paths to the converted images
error: Error message if conversion failed
page_count: Total number of pages in the PDF
temp_files: List of temporary files that should be cleaned up
"""
self.success = success
self.images = images or []
self.error = error
self.page_count = page_count
self.temp_files = temp_files or []
def __bool__(self):
"""Enable boolean evaluation of the result."""
return self.success
def cleanup(self):
"""Clean up any temporary files created during conversion."""
for temp_file in self.temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
logger.debug(f"Removed temporary file: {temp_file}")
except Exception as e:
logger.warning(f"Failed to remove temporary file {temp_file}: {e}")
self.temp_files = []
class PDFOCR:
"""Class for processing PDF files with OCR and extracting structured data."""
def __init__(self, api_key=None):
"""Initialize the PDF OCR processor."""
self.processor = StructuredOCR(api_key=api_key)
self.temp_files = []
def __del__(self):
"""Clean up resources when object is destroyed."""
self.cleanup()
def cleanup(self):
"""Clean up any temporary files."""
for temp_file in self.temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
logger.debug(f"Removed temporary file: {temp_file}")
except Exception as e:
logger.warning(f"Failed to remove temporary file {temp_file}: {e}")
self.temp_files = []
def convert_pdf_to_images(self,
pdf_path: Union[str, Path],
dpi: int = 200,
max_pages: Optional[int] = None,
page_numbers: Optional[List[int]] = None) -> PDFConversionResult:
"""
Convert a PDF file to images.
Args:
pdf_path: Path to the PDF file
dpi: DPI for the output images
max_pages: Maximum number of pages to convert (None for all)
page_numbers: Specific page numbers to convert (1-based indexing)
Returns:
PDFConversionResult object with conversion results
"""
pdf_path = Path(pdf_path)
if not pdf_path.exists():
return PDFConversionResult(
success=False,
error=f"PDF file not found: {pdf_path}"
)
# Check file size
file_size_mb = pdf_path.stat().st_size / (1024 * 1024)
logger.info(f"PDF size: {file_size_mb:.2f} MB")
try:
# Import pdf2image for conversion
import pdf2image
# Initialize list for temporary files
temp_files = []
# Optimize conversion parameters based on file size
thread_count = min(4, os.cpu_count() or 2)
# First, determine total pages in the document
logger.info("Determining PDF page count...")
try:
# Use a lightweight approach with multi-threading for faster processing
pdf_info = pdf2image.convert_from_path(
pdf_path,
dpi=72, # Low DPI just for info
first_page=1,
last_page=1,
size=(100, 100), # Tiny image to save memory
fmt="jpeg",
thread_count=thread_count,
output_file=None
)
# Get page count from poppler info if available
if hasattr(pdf_info, 'n_pages'):
total_pages = pdf_info.n_pages
else:
# Try a different approach to get page count
try:
from pypdf import PdfReader
reader = PdfReader(pdf_path)
total_pages = len(reader.pages)
except:
total_pages = 1
logger.warning("Could not determine total page count, assuming 1 page")
except Exception as e:
logger.warning(f"Failed to determine page count: {e}")
total_pages = 1
logger.info(f"PDF has {total_pages} total pages")
# Determine which pages to process
pages_to_process = []
# If specific pages are requested, use those
if page_numbers and any(1 <= p <= total_pages for p in page_numbers):
pages_to_process = [p for p in page_numbers if 1 <= p <= total_pages]
logger.info(f"Converting {len(pages_to_process)} specified pages: {pages_to_process}")
# If max_pages is set, limit to that number
elif max_pages and max_pages < total_pages:
pages_to_process = list(range(1, max_pages + 1))
logger.info(f"Converting first {max_pages} pages of {total_pages} total")
# Otherwise convert all pages if reasonable count
else:
pages_to_process = list(range(1, total_pages + 1))
logger.info(f"Converting all {total_pages} pages")
# Convert PDF to images
converted_images = []
# Process in batches for better memory management
batch_size = min(5, len(pages_to_process)) # Process up to 5 pages at a time
for i in range(0, len(pages_to_process), batch_size):
batch_pages = pages_to_process[i:i+batch_size]
logger.info(f"Converting batch of pages {batch_pages}")
# Convert this batch of pages
try:
batch_images = pdf2image.convert_from_path(
pdf_path,
dpi=dpi,
first_page=min(batch_pages),
last_page=max(batch_pages),
thread_count=thread_count,
fmt="jpeg"
)
# Map converted images to requested page numbers
for idx, page_num in enumerate(range(min(batch_pages), max(batch_pages) + 1)):
if page_num in pages_to_process and idx < len(batch_images):
# Save the image to a temporary file
img_temp_path = tempfile.NamedTemporaryFile(suffix=f'_page{page_num}.jpg', delete=False).name
batch_images[idx].save(img_temp_path, format='JPEG', quality=95)
# Add to results and track the temp file
converted_images.append((page_num, Path(img_temp_path)))
temp_files.append(img_temp_path)
except Exception as e:
logger.error(f"Failed to convert batch {batch_pages}: {e}")
# Continue with other batches
# Sort by page number to ensure correct order
converted_images.sort(key=lambda x: x[0])
# Extract just the image paths in correct page order
image_paths = [img_path for _, img_path in converted_images]
if not image_paths:
# No images were successfully converted
return PDFConversionResult(
success=False,
error="Failed to convert PDF to images",
page_count=total_pages,
temp_files=temp_files
)
# Store temp files for later cleanup
self.temp_files.extend(temp_files)
# Return successful result
return PDFConversionResult(
success=True,
images=image_paths,
page_count=total_pages,
temp_files=temp_files
)
except ImportError:
return PDFConversionResult(
success=False,
error="pdf2image module not available. Please install with: pip install pdf2image"
)
except Exception as e:
logger.error(f"PDF conversion error: {str(e)}")
return PDFConversionResult(
success=False,
error=f"Failed to convert PDF to images: {str(e)}"
)
def process_pdf(self, pdf_path, use_vision=True, max_pages=None, custom_pages=None, custom_prompt=None):
"""
Process a PDF file with OCR and extract structured data.
Args:
pdf_path: Path to the PDF file
use_vision: Whether to use vision model for improved analysis
max_pages: Maximum number of pages to process
custom_pages: Specific page numbers to process (1-based indexing)
custom_prompt: Custom instructions for processing
Returns:
Dictionary with structured OCR results
"""
pdf_path = Path(pdf_path)
if not pdf_path.exists():
raise FileNotFoundError(f"PDF file not found: {pdf_path}")
# Convert page numbers to list if provided
page_numbers = None
if custom_pages:
if isinstance(custom_pages, (list, tuple)):
page_numbers = custom_pages
else:
try:
# Try to parse as comma-separated string
page_numbers = [int(p.strip()) for p in str(custom_pages).split(',')]
except:
logger.warning(f"Invalid custom_pages format: {custom_pages}. Should be list or comma-separated string.")
# First try our optimized PDF to image conversion
conversion_result = self.convert_pdf_to_images(
pdf_path=pdf_path,
max_pages=max_pages,
page_numbers=page_numbers
)
if conversion_result.success and conversion_result.images:
logger.info(f"Successfully converted PDF to {len(conversion_result.images)} images")
# Determine if we need to add PDF-specific context to the prompt
modified_prompt = custom_prompt
if not modified_prompt:
modified_prompt = f"This is a multi-page PDF document with {conversion_result.page_count} total pages, of which {len(conversion_result.images)} were processed."
elif "pdf" not in modified_prompt.lower() and "multi-page" not in modified_prompt.lower():
modified_prompt += f" This is a multi-page PDF document with {conversion_result.page_count} total pages, of which {len(conversion_result.images)} were processed."
try:
# First process the first page with vision if requested
first_page_result = self.processor.process_file(
file_path=conversion_result.images[0],
file_type="image",
use_vision=use_vision,
custom_prompt=modified_prompt
)
# Process additional pages if available
all_pages_text = []
all_languages = set()
# Extract text from first page
if 'ocr_contents' in first_page_result and 'raw_text' in first_page_result['ocr_contents']:
all_pages_text.append(first_page_result['ocr_contents']['raw_text'])
# Track languages from first page
if 'languages' in first_page_result:
for lang in first_page_result['languages']:
all_languages.add(str(lang))
# Process additional pages if any
for i, img_path in enumerate(conversion_result.images[1:], 1):
try:
# Simple text extraction for additional pages
page_result = self.processor.process_file(
file_path=img_path,
file_type="image",
use_vision=False, # Use simpler processing for additional pages
custom_prompt=f"This is page {i+1} of a {conversion_result.page_count}-page document."
)
# Extract text
if 'ocr_contents' in page_result and 'raw_text' in page_result['ocr_contents']:
all_pages_text.append(page_result['ocr_contents']['raw_text'])
# Track languages
if 'languages' in page_result:
for lang in page_result['languages']:
all_languages.add(str(lang))
except Exception as e:
logger.warning(f"Error processing page {i+1}: {e}")
# Combine all text into a single document
combined_text = "\n\n".join(all_pages_text)
# Update the first page result with combined data
if 'ocr_contents' in first_page_result:
first_page_result['ocr_contents']['raw_text'] = combined_text
# Update languages with all detected languages
if all_languages:
first_page_result['languages'] = list(all_languages)
# Add PDF metadata
first_page_result['file_name'] = pdf_path.name
first_page_result['file_type'] = "pdf"
first_page_result['total_pages'] = conversion_result.page_count
first_page_result['processed_pages'] = len(conversion_result.images)
# Add conversion info
first_page_result['pdf_conversion'] = {
"method": "pdf2image",
"pages_converted": len(conversion_result.images),
"pages_requested": len(page_numbers) if page_numbers else (max_pages or conversion_result.page_count)
}
return first_page_result
except Exception as e:
logger.error(f"Error processing converted images: {e}")
# Fall back to direct processing via StructuredOCR
finally:
# Clean up temporary files
conversion_result.cleanup()
# If conversion failed or processing the images failed, fall back to direct processing
logger.info(f"Using direct StructuredOCR processing for PDF")
return self.processor.process_file(
file_path=pdf_path,
file_type="pdf",
use_vision=use_vision,
max_pages=max_pages,
custom_pages=custom_pages,
custom_prompt=custom_prompt
)
def save_json_output(self, pdf_path, output_path, use_vision=True, max_pages=None, custom_pages=None, custom_prompt=None):
"""
Process a PDF file and save the structured output as JSON.
Args:
pdf_path: Path to the PDF file
output_path: Path where to save the JSON output
use_vision: Whether to use vision model for improved analysis
max_pages: Maximum number of pages to process
custom_pages: Specific page numbers to process (1-based indexing)
custom_prompt: Custom instructions for processing
Returns:
Path to the saved JSON file
"""
# Process the PDF
result = self.process_pdf(
pdf_path,
use_vision=use_vision,
max_pages=max_pages,
custom_pages=custom_pages,
custom_prompt=custom_prompt
)
# Save the result to JSON
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
with open(output_path, 'w') as f:
json.dump(result, f, indent=2)
return output_path
# For testing directly
if __name__ == "__main__":
import sys
import argparse
parser = argparse.ArgumentParser(description="Process PDF files with OCR.")
parser.add_argument("pdf_path", help="Path to the PDF file to process")
parser.add_argument("--output", "-o", help="Path to save the output JSON")
parser.add_argument("--no-vision", dest="use_vision", action="store_false",
help="Disable vision model for processing")
parser.add_argument("--max-pages", type=int, help="Maximum number of pages to process")
parser.add_argument("--pages", help="Specific pages to process (comma-separated)")
parser.add_argument("--prompt", help="Custom prompt for processing")
args = parser.parse_args()
processor = PDFOCR()
# Parse custom pages if provided
custom_pages = None
if args.pages:
try:
custom_pages = [int(p.strip()) for p in args.pages.split(',')]
except:
print(f"Error parsing pages: {args.pages}. Should be comma-separated list of numbers.")
sys.exit(1)
if args.output:
result_path = processor.save_json_output(
args.pdf_path,
args.output,
use_vision=args.use_vision,
max_pages=args.max_pages,
custom_pages=custom_pages,
custom_prompt=args.prompt
)
print(f"Results saved to: {result_path}")
else:
result = processor.process_pdf(
args.pdf_path,
use_vision=args.use_vision,
max_pages=args.max_pages,
custom_pages=custom_pages,
custom_prompt=args.prompt
)
print(json.dumps(result, indent=2))
|