File size: 37,735 Bytes
aabc02c
7647e70
 
 
 
 
 
 
aabc02c
 
 
 
 
 
 
 
 
 
7647e70
c04ffe5
 
 
7647e70
3dd2ff2
7647e70
836388f
7647e70
 
aabc02c
7647e70
 
 
 
 
 
 
 
 
 
aabc02c
7647e70
 
 
 
 
 
 
 
 
 
 
 
 
aabc02c
 
7647e70
 
 
 
 
836388f
 
7647e70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94e74f0
7647e70
 
 
 
 
aabc02c
 
 
 
7647e70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94e74f0
7647e70
 
 
 
 
 
 
aabc02c
 
 
 
 
7647e70
 
 
 
 
 
 
 
 
 
94e74f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7647e70
 
94e74f0
 
7647e70
 
94e74f0
 
aabc02c
94e74f0
3dd2ff2
94e74f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dd2ff2
94e74f0
 
 
 
 
 
 
 
 
 
 
 
 
 
7647e70
 
 
 
 
3dd2ff2
7647e70
 
 
 
 
 
 
 
 
836388f
 
 
 
 
 
42dc069
 
 
 
 
 
 
836388f
 
 
 
 
 
 
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73375a3
 
 
 
 
 
 
 
 
 
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
836388f
42dc069
 
 
 
836388f
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
836388f
42dc069
 
836388f
 
 
 
 
7647e70
 
 
 
 
 
 
 
 
 
 
 
 
42dc069
 
aabc02c
 
3dd2ff2
 
94e74f0
3dd2ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dc069
 
aabc02c
42dc069
 
 
 
 
 
 
 
aabc02c
 
 
 
 
 
 
 
 
 
 
 
 
7647e70
 
 
 
 
 
 
 
 
 
 
 
 
 
42dc069
 
aabc02c
 
3dd2ff2
 
94e74f0
3dd2ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dc069
 
aabc02c
42dc069
 
 
 
 
 
 
 
aabc02c
7647e70
 
 
 
aabc02c
7647e70
 
 
 
 
 
 
 
42dc069
 
 
3dd2ff2
 
 
94e74f0
3dd2ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dc069
c04ffe5
 
 
 
42dc069
 
c04ffe5
 
7647e70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dc069
7647e70
 
42dc069
 
 
 
 
7647e70
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
# Standard library imports
import os
import hashlib
import tempfile
import logging
import time
from datetime import datetime
from pathlib import Path

# Configure logging
logging.basicConfig(level=logging.INFO, 
                   format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Third-party imports
import streamlit as st

# Local application imports
from structured_ocr import StructuredOCR
# Import from updated utils directory
from utils.image_utils import clean_ocr_result
# Temporarily retain old utils imports until they are fully migrated
from utils import generate_cache_key, timing, format_timestamp, create_descriptive_filename, extract_subject_tags
import preprocessing
from error_handler import handle_ocr_error, check_file_size
from image_segmentation import segment_image_for_ocr, process_segmented_image

@st.cache_data(ttl=24*3600, max_entries=20, show_spinner=False)
def process_file_cached(file_path, file_type, use_vision, file_size_mb, cache_key, preprocessing_options_hash=None, custom_prompt=None):
    """
    Cached version of OCR processing to reuse results
    
    Args:
        file_path: Path to the file to process
        file_type: Type of file (pdf or image)
        use_vision: Whether to use vision model
        file_size_mb: File size in MB
        cache_key: Cache key for the file
        preprocessing_options_hash: Hash of preprocessing options
        custom_prompt: Custom prompt to use for OCR
        
    Returns:
        dict: OCR result
    """
    # Initialize OCR processor
    processor = StructuredOCR()
    
    # Process the file
    with timing(f"OCR processing of {file_type} file"):
        result = processor.process_file(
            file_path, 
            file_type=file_type, 
            use_vision=use_vision, 
            file_size_mb=file_size_mb,
            custom_prompt=custom_prompt
        )
    
    return result

def process_file(uploaded_file, use_vision=True, preprocessing_options=None, progress_reporter=None, 
                 pdf_dpi=150, max_pages=3, pdf_rotation=0, custom_prompt=None, perf_mode="Quality",
                 use_segmentation=False):
    """
    Process the uploaded file and return the OCR results
    
    Args:
        uploaded_file: The uploaded file to process
        use_vision: Whether to use vision model
        preprocessing_options: Dictionary of preprocessing options
        progress_reporter: ProgressReporter instance for UI updates
        pdf_dpi: DPI for PDF conversion
        max_pages: Maximum number of pages to process
        pdf_rotation: PDF rotation value
        custom_prompt: Custom prompt for OCR
        perf_mode: Performance mode (Quality or Speed)
        
    Returns:
        dict: OCR result
    """
    if preprocessing_options is None:
        preprocessing_options = {}
    
    # Create a container for progress indicators if not provided
    if progress_reporter is None:
        from ui.ui_components import ProgressReporter
        progress_reporter = ProgressReporter(st.empty()).setup()
    
    # Initialize temporary file paths list
    temp_file_paths = []
    
    # Also track temporary files in session state for reliable cleanup
    if 'temp_file_paths' not in st.session_state:
        st.session_state.temp_file_paths = []
    
    try:
        # Check if file size exceeds maximum allowed size
        is_valid, file_size_mb, error_message = check_file_size(uploaded_file.getvalue())
        if not is_valid:
            progress_reporter.complete(success=False)
            st.error(error_message)
            return {
                "file_name": uploaded_file.name,
                "topics": ["Document"],
                "languages": ["English"],
                "error": error_message,
                "ocr_contents": {
                    "error": error_message,
                    "partial_text": "Document could not be processed due to size limitations."
                }
            }
        
        # Update progress
        progress_reporter.update(10, "Initializing OCR processor...")
        
        # Determine file type from extension
        file_ext = Path(uploaded_file.name).suffix.lower()
        file_type = "pdf" if file_ext == ".pdf" else "image"
        file_bytes = uploaded_file.getvalue()
        
        # For PDFs, we need to handle differently
        if file_type == "pdf":
            progress_reporter.update(20, "Preparing PDF document...")
            
            # Create a temporary file for processing
            temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=file_ext).name
            with open(temp_path, 'wb') as f:
                f.write(file_bytes)
            temp_file_paths.append(temp_path)
            
            # Track temp files in session state for reliable cleanup
            if temp_path not in st.session_state.temp_file_paths:
                st.session_state.temp_file_paths.append(temp_path)
                logger.info(f"Added temp file to session state: {temp_path}")
            
            # Generate cache key
            cache_key = generate_cache_key(
                file_bytes, 
                file_type, 
                use_vision, 
                preprocessing_options, 
                pdf_rotation, 
                custom_prompt
            )
            
            # Use the document type information from preprocessing options
            doc_type = preprocessing_options.get("document_type", "standard")
            modified_custom_prompt = custom_prompt
            
            # Enhance the prompt with document-type specific instructions
            # Check for letterhead/marginalia document types with specialized handling
            try:
                from utils.helpers.letterhead_handler import get_letterhead_prompt, is_likely_letterhead
                # Extract text density features if available
                features = None
                if 'text_density' in preprocessing_options:
                    features = preprocessing_options['text_density']
                    
                # Check if this looks like a letterhead document
                if is_likely_letterhead(temp_path, features):
                    # Get specialized letterhead prompt
                    letterhead_prompt = get_letterhead_prompt(temp_path, features)
                    if letterhead_prompt:
                        logger.info(f"Using specialized letterhead prompt for document")
                        modified_custom_prompt = letterhead_prompt
                        # Set document type for tracking
                        preprocessing_options["document_type"] = "letterhead"
                        doc_type = "letterhead"
            except ImportError:
                logger.debug("Letterhead handler not available")
            
            # Add document-type specific instructions based on preprocessing options
            if doc_type == "handwritten" and not modified_custom_prompt:
                modified_custom_prompt = "This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting."
            elif doc_type == "handwritten" and "handwritten" not in modified_custom_prompt.lower():
                modified_custom_prompt += " This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting."
            elif doc_type == "newspaper" and not modified_custom_prompt:
                modified_custom_prompt = "This is a newspaper or document with columns. Please extract all text content from each column, maintaining proper reading order."
            elif doc_type == "newspaper" and "column" not in modified_custom_prompt.lower() and "newspaper" not in modified_custom_prompt.lower():
                modified_custom_prompt += " This appears to be a newspaper or document with columns. Please extract all text content from each column."
            elif doc_type == "book" and not modified_custom_prompt:
                modified_custom_prompt = "This is a book page. Extract titles, headers, footnotes, and body text, preserving paragraph structure and formatting."
            
            # Update the cache key with the modified prompt
            if modified_custom_prompt != custom_prompt:
                cache_key = generate_cache_key(
                    open(temp_path, 'rb').read(), 
                    file_type, 
                    use_vision, 
                    preprocessing_options, 
                    pdf_rotation,
                    modified_custom_prompt
                )
            
            progress_reporter.update(30, "Processing PDF with enhanced OCR...")
            
            # Process with cached function if possible
            try:
                result = process_file_cached(temp_path, file_type, use_vision, file_size_mb, cache_key, 
                                           str(preprocessing_options), modified_custom_prompt)
                progress_reporter.update(90, "Finalizing results...")
            except Exception as e:
                logger.warning(f"Cached processing failed: {str(e)}. Using direct processing.")
                progress_reporter.update(60, f"Processing error: {str(e)}. Using enhanced PDF processor...")
                
                # Import the enhanced PDF processor
                try:
                    from utils.pdf_ocr import PDFOCR
                    
                    # Use our specialized PDF processor
                    pdf_processor = PDFOCR()
                    
                    # Process with the enhanced PDF processor
                    result = pdf_processor.process_pdf(
                        pdf_path=temp_path,
                        use_vision=use_vision,
                        max_pages=max_pages, 
                        custom_prompt=modified_custom_prompt
                    )
                    
                    logger.info("PDF successfully processed with enhanced PDF processor")
                    progress_reporter.update(90, "Finalizing results...")
                except ImportError:
                    logger.warning("Enhanced PDF processor not available. Falling back to standard processing.")
                    progress_reporter.update(70, "Falling back to standard PDF processing...")
                    
                    # If enhanced processor is not available, fall back to direct StructuredOCR processing
                    processor = StructuredOCR()
                    result = processor.process_file(
                        file_path=temp_path,
                        file_type="pdf",
                        use_vision=use_vision,
                        custom_prompt=modified_custom_prompt,
                        file_size_mb=file_size_mb,
                        max_pages=max_pages
                    )
                    progress_reporter.update(90, "Finalizing results...")
        else:
            # For image files
            progress_reporter.update(20, "Preparing image for processing...")
            
            # Apply preprocessing if needed
            temp_path, preprocessing_applied = preprocessing.apply_preprocessing_to_file(
                file_bytes, 
                file_ext, 
                preprocessing_options, 
                temp_file_paths
            )
            
            if preprocessing_applied:
                progress_reporter.update(30, "Applied image preprocessing...")
            
            # Apply image segmentation if requested
            # This is especially helpful for complex documents with mixed text and images
            if use_segmentation:
                progress_reporter.update(35, "Applying image segmentation to separate text and image regions...")
                
                try:
                    # Perform image segmentation with content preservation if requested
                    preserve_content = preprocessing_options.get("preserve_content", True)
                    segmentation_results = segment_image_for_ocr(
                        temp_path, 
                        vision_enabled=use_vision,
                        preserve_content=preserve_content
                    )
                    
                    if segmentation_results['combined_result'] is not None:
                        # Save the segmented result to a new temporary file
                        segmented_temp_path = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg').name
                        segmentation_results['combined_result'].save(segmented_temp_path)
                        temp_file_paths.append(segmented_temp_path)
                        
                        # Check if we have individual region images to process separately
                        if 'region_images' in segmentation_results and segmentation_results['region_images']:
                            # Process each region separately for better results
                            regions_count = len(segmentation_results['region_images'])
                            logger.info(f"Processing {regions_count} text regions individually")
                            progress_reporter.update(40, f"Processing {regions_count} text regions separately...")
                            
                            # Initialize StructuredOCR processor
                            processor = StructuredOCR()
                            
                            # Store individual region results
                            region_results = []
                            
                            # Process each region individually
                            for idx, region_info in enumerate(segmentation_results['region_images']):
                                # Save region image to temp file
                                region_temp_path = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg').name
                                region_info['pil_image'].save(region_temp_path)
                                temp_file_paths.append(region_temp_path)
                                
                                # Create region-specific prompt
                                region_prompt = f"This is region {idx+1} of {regions_count} from a segmented document. Extract all visible text precisely, preserving line breaks and structure."
                                
                                # Process the region
                                try:
                                    region_result = processor.process_file(
                                        file_path=region_temp_path,
                                        file_type="image",
                                        use_vision=use_vision,
                                        custom_prompt=region_prompt,
                                        file_size_mb=None
                                    )
                                    
                                    # Store result with region info
                                    if 'ocr_contents' in region_result and 'raw_text' in region_result['ocr_contents']:
                                        region_results.append({
                                            'text': region_result['ocr_contents']['raw_text'],
                                            'coordinates': region_info['coordinates'],
                                            'order': region_info['order']
                                        })
                                except Exception as region_err:
                                    logger.warning(f"Error processing region {idx+1}: {str(region_err)}")
                            
                            # Sort regions by their order for correct reading flow
                            region_results.sort(key=lambda x: x['order'])
                            
                            # Import the text utilities for intelligent merging
                            try:
                                from utils.text_utils import merge_region_texts
                                # Use intelligent merging to avoid duplication in overlapped regions
                                combined_text = merge_region_texts(region_results)
                                logger.info("Using intelligent text merging for overlapping regions")
                            except ImportError:
                                # Fallback to simple joining if import fails
                                combined_text = "\n\n".join([r['text'] for r in region_results if r['text'].strip()])
                                logger.warning("Using simple text joining (utils.text_utils not available)")
                            
                            # Store combined results for later use
                            preprocessing_options['segmentation_data'] = {
                                'text_regions_coordinates': segmentation_results.get('text_regions_coordinates', []),
                                'regions_count': regions_count,
                                'segmentation_applied': True,
                                'combined_text': combined_text,
                                'region_results': region_results
                            }
                            
                            logger.info(f"Successfully processed {len(region_results)} text regions")
                            
                            # Set up the temp path to use the segmented image
                            temp_path = segmented_temp_path
                            
                            # IMPORTANT: We've already extracted text from individual regions,
                            # emphasize their importance in our prompt
                            if custom_prompt:
                                # Add strong emphasis on using the already extracted text
                                custom_prompt += f" IMPORTANT: The document has been segmented into {regions_count} text regions that have been processed individually. The text from these regions should be given HIGHEST PRIORITY and used as the primary source of text for the document. The combined image is provided only as supplementary context."
                            else:
                                # Create explicit prompt prioritizing region text
                                custom_prompt = f"CRITICAL: This document has been preprocessed to highlight {regions_count} text regions that have been individually processed. The text from these regions is the PRIMARY source of content and should be prioritized over any text extracted from the combined image. Use the combined image only for context and layout understanding."
                        else:
                            # No individual regions found, use combined result
                            temp_path = segmented_temp_path
                            
                            # Enhanced prompt based on segmentation results
                            regions_count = len(segmentation_results.get('text_regions_coordinates', []))
                            if custom_prompt:
                                # Add segmentation info to existing prompt
                                custom_prompt += f" The document has been segmented and contains approximately {regions_count} text regions that should be carefully extracted. Please focus on extracting all text from these regions."
                            else:
                                # Create new prompt focused on text extraction from segmented regions
                                custom_prompt = f"This document has been preprocessed to highlight {regions_count} text regions. Please carefully extract all text from these highlighted regions, preserving the reading order and structure."
                            
                            # Store segmentation data in preprocessing options for later use
                            preprocessing_options['segmentation_data'] = {
                                'text_regions_coordinates': segmentation_results.get('text_regions_coordinates', []),
                                'regions_count': regions_count,
                                'segmentation_applied': True
                            }
                        
                        logger.info(f"Image segmentation applied. Found {len(segmentation_results.get('text_regions_coordinates', []))} text regions.")
                        progress_reporter.update(40, f"Identified {len(segmentation_results.get('text_regions_coordinates', []))} text regions for extraction...")
                    else:
                        logger.warning("Image segmentation produced no result, using original image.")
                except Exception as seg_error:
                    logger.warning(f"Image segmentation failed: {str(seg_error)}. Continuing with standard processing.")
            
            # Generate cache key
            cache_key = generate_cache_key(
                open(temp_path, 'rb').read(), 
                file_type, 
                use_vision, 
                preprocessing_options, 
                0,  # No rotation for images (handled in preprocessing)
                custom_prompt
            )
            
            # Process the file using cached function if possible
            progress_reporter.update(50, "Processing document with OCR...")
            try:
                # Use the document type from preprocessing options
                doc_type = preprocessing_options.get("document_type", "standard")
                modified_custom_prompt = custom_prompt
                
                # Check for letterhead/marginalia document types with specialized handling
                try:
                    from utils.helpers.letterhead_handler import get_letterhead_prompt, is_likely_letterhead
                    # Extract text density features if available
                    features = None
                    if 'text_density' in preprocessing_options:
                        features = preprocessing_options['text_density']
                        
                    # Check if this looks like a letterhead document
                    if is_likely_letterhead(temp_path, features):
                        # Get specialized letterhead prompt
                        letterhead_prompt = get_letterhead_prompt(temp_path, features)
                        if letterhead_prompt:
                            logger.info(f"Using specialized letterhead prompt for document")
                            modified_custom_prompt = letterhead_prompt
                            # Set document type for tracking
                            preprocessing_options["document_type"] = "letterhead"
                            doc_type = "letterhead"
                except ImportError:
                    logger.debug("Letterhead handler not available")
                
                # Add document-type specific instructions based on preprocessing options
                if doc_type == "handwritten" and not modified_custom_prompt:
                    modified_custom_prompt = "This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting."
                elif doc_type == "handwritten" and "handwritten" not in modified_custom_prompt.lower():
                    modified_custom_prompt += " This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting."
                elif doc_type == "newspaper" and not modified_custom_prompt:
                    modified_custom_prompt = "This is a newspaper or document with columns. Please extract all text content from each column, maintaining proper reading order."
                elif doc_type == "newspaper" and "column" not in modified_custom_prompt.lower() and "newspaper" not in modified_custom_prompt.lower():
                    modified_custom_prompt += " This appears to be a newspaper or document with columns. Please extract all text content from each column."
                elif doc_type == "book" and not modified_custom_prompt:
                    modified_custom_prompt = "This is a book page. Extract titles, headers, footnotes, and body text, preserving paragraph structure and formatting."
                
                # Update the cache key with the modified prompt
                if modified_custom_prompt != custom_prompt:
                    cache_key = generate_cache_key(
                        open(temp_path, 'rb').read(), 
                        file_type, 
                        use_vision, 
                        preprocessing_options, 
                        0,
                        modified_custom_prompt
                    )
                
                result = process_file_cached(temp_path, file_type, use_vision, file_size_mb, cache_key, str(preprocessing_options), modified_custom_prompt)
                progress_reporter.update(80, "Analyzing document structure...")
                progress_reporter.update(90, "Finalizing results...")
            except Exception as e:
                logger.warning(f"Cached processing failed: {str(e)}. Retrying with direct processing.")
                progress_reporter.update(60, f"Processing error: {str(e)}. Retrying...")
                
                # If caching fails, process directly
                processor = StructuredOCR()
                
                # Apply performance mode settings
                if perf_mode == "Speed":
                    # Use simpler processing for speed
                    pass  # Any speed optimizations would be handled by the StructuredOCR class
                
                # Use the document type from preprocessing options
                doc_type = preprocessing_options.get("document_type", "standard")
                modified_custom_prompt = custom_prompt
                
                # Check for letterhead/marginalia document types with specialized handling
                try:
                    from utils.helpers.letterhead_handler import get_letterhead_prompt, is_likely_letterhead
                    # Extract text density features if available
                    features = None
                    if 'text_density' in preprocessing_options:
                        features = preprocessing_options['text_density']
                        
                    # Check if this looks like a letterhead document
                    if is_likely_letterhead(temp_path, features):
                        # Get specialized letterhead prompt
                        letterhead_prompt = get_letterhead_prompt(temp_path, features)
                        if letterhead_prompt:
                            logger.info(f"Using specialized letterhead prompt for document")
                            modified_custom_prompt = letterhead_prompt
                            # Set document type for tracking
                            preprocessing_options["document_type"] = "letterhead"
                            doc_type = "letterhead"
                except ImportError:
                    logger.debug("Letterhead handler not available")
                
                # Add document-type specific instructions based on preprocessing options
                if doc_type == "handwritten" and not modified_custom_prompt:
                    modified_custom_prompt = "This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting."
                elif doc_type == "handwritten" and "handwritten" not in modified_custom_prompt.lower():
                    modified_custom_prompt += " This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting."
                elif doc_type == "newspaper" and not modified_custom_prompt:
                    modified_custom_prompt = "This is a newspaper or document with columns. Please extract all text content from each column, maintaining proper reading order."
                elif doc_type == "newspaper" and "column" not in modified_custom_prompt.lower() and "newspaper" not in modified_custom_prompt.lower():
                    modified_custom_prompt += " This appears to be a newspaper or document with columns. Please extract all text content from each column."
                elif doc_type == "book" and not modified_custom_prompt:
                    modified_custom_prompt = "This is a book page. Extract titles, headers, footnotes, and body text, preserving paragraph structure and formatting."
                
                result = processor.process_file(
                    file_path=temp_path,
                    file_type=file_type,
                    use_vision=use_vision,
                    custom_prompt=modified_custom_prompt,
                    file_size_mb=file_size_mb
                )
                
                progress_reporter.update(90, "Finalizing results...")
        
        # Add additional metadata to result
        result = process_result(result, uploaded_file, preprocessing_options)
        
        # Make sure file_type is explicitly set for PDFs
        if file_type == "pdf":
            result['file_type'] = "pdf"
            
        # Check for duplicated text patterns that indicate handwritten text issues
        try:
            from utils.helpers.ocr_text_repair import detect_duplicate_text_issues, get_enhanced_preprocessing_options, get_handwritten_specific_prompt, clean_duplicated_text
            
            # Check OCR output for duplication issues
            if result and 'ocr_contents' in result and 'raw_text' in result['ocr_contents']:
                ocr_text = result['ocr_contents']['raw_text']
                has_duplication, duplication_details = detect_duplicate_text_issues(ocr_text)
                
                # If we detect significant duplication in the output
                if has_duplication and duplication_details.get('duplication_rate', 0) > 0.1:
                    logger.info(f"Detected text duplication issues. Reprocessing as handwritten document with enhanced settings...")
                    progress_reporter.update(75, "Detected duplication issues. Reprocessing with enhanced settings...")
                    
                    # Save original result before reprocessing
                    original_result = result
                    
                    # Get enhanced preprocessing options for handwritten text
                    enhanced_options = get_enhanced_preprocessing_options(preprocessing_options)
                    
                    # Reprocess with enhanced settings and specialized prompt
                    handwritten_prompt = get_handwritten_specific_prompt(custom_prompt)
                    
                    # Process the image with the enhanced settings
                    try:
                        # Apply enhanced preprocessing to the original image
                        enhanced_temp_path, _ = preprocessing.apply_preprocessing_to_file(
                            open(temp_path, 'rb').read(), 
                            Path(temp_path).suffix.lower(), 
                            enhanced_options, 
                            temp_file_paths
                        )
                        
                        # Process with enhanced settings
                        processor = StructuredOCR()
                        enhanced_result = processor.process_file(
                            file_path=enhanced_temp_path,
                            file_type="image",
                            use_vision=use_vision,
                            custom_prompt=handwritten_prompt,
                            file_size_mb=file_size_mb
                        )
                        
                        # Check if the enhanced result is better (less duplication)
                        if 'ocr_contents' in enhanced_result and 'raw_text' in enhanced_result['ocr_contents']:
                            enhanced_text = enhanced_result['ocr_contents']['raw_text']
                            _, enhanced_issues = detect_duplicate_text_issues(enhanced_text)
                            
                            # Use the enhanced result if it's better
                            if enhanced_issues.get('duplication_rate', 1.0) < duplication_details.get('duplication_rate', 1.0):
                                logger.info("Enhanced processing improved OCR quality. Using enhanced result.")
                                result = enhanced_result
                                # Preserve document type and preprocessing info
                                result['document_type'] = 'handwritten'
                                result['preprocessing'] = enhanced_options
                            else:
                                # If enhancement didn't help, clean up the original result
                                logger.info("Enhanced processing did not improve OCR quality. Cleaning original result.")
                                result = original_result
                                # Clean up duplication in the text
                                if 'ocr_contents' in result and 'raw_text' in result['ocr_contents']:
                                    result['ocr_contents']['raw_text'] = clean_duplicated_text(result['ocr_contents']['raw_text'])
                        else:
                            # Fallback to original with cleaning
                            logger.info("Enhanced processing failed. Cleaning original result.")
                            result = original_result
                            # Clean up duplication in the text
                            if 'ocr_contents' in result and 'raw_text' in result['ocr_contents']:
                                result['ocr_contents']['raw_text'] = clean_duplicated_text(result['ocr_contents']['raw_text'])
                    except Exception as enh_error:
                        logger.warning(f"Enhanced processing failed: {str(enh_error)}. Using cleaned original.")
                        # Fallback to original with cleaning
                        result = original_result
                        # Clean up duplication in the text
                        if 'ocr_contents' in result and 'raw_text' in result['ocr_contents']:
                            result['ocr_contents']['raw_text'] = clean_duplicated_text(result['ocr_contents']['raw_text'])
        except ImportError:
            logger.debug("OCR text repair module not available")
        
        # 🔧 ALWAYS normalize result before returning
        result = clean_ocr_result(
            result,
            use_segmentation=use_segmentation,
            vision_enabled=use_vision,
            preprocessing_options=preprocessing_options
        )
        
        # Complete progress
        progress_reporter.complete()
        
        return result
    except Exception as e:
        # Handle errors
        error_message = handle_ocr_error(e, progress_reporter)
        
        # Return error result
        return {
            "file_name": uploaded_file.name,
            "topics": ["Document"],
            "languages": ["English"],
            "error": error_message,
            "ocr_contents": {
                "error": f"Failed to process file: {error_message}",
                "partial_text": "Document could not be processed due to an error."
            }
        }
    finally:
        # Clean up temporary files
        for temp_path in temp_file_paths:
            try:
                if os.path.exists(temp_path):
                    os.unlink(temp_path)
                    logger.info(f"Removed temporary file: {temp_path}")
            except Exception as e:
                logger.warning(f"Failed to remove temporary file {temp_path}: {str(e)}")

def process_result(result, uploaded_file, preprocessing_options=None):
    """
    Process OCR result to add metadata, tags, etc.
    
    Args:
        result: OCR result dictionary
        uploaded_file: The uploaded file
        preprocessing_options: Dictionary of preprocessing options
        
    Returns:
        dict: Processed OCR result
    """
    # Add timestamp
    result['timestamp'] = format_timestamp()
    
    # Add processing time if not already present
    if 'processing_time' not in result:
        result['processing_time'] = 0.0
    
    # Generate descriptive filename
    file_ext = Path(uploaded_file.name).suffix.lower()
    result['descriptive_file_name'] = create_descriptive_filename(
        uploaded_file.name, 
        result, 
        file_ext, 
        preprocessing_options
    )
    
    # Extract raw text from OCR contents for tag extraction without duplicating content
    raw_text = ""
    if 'ocr_contents' in result:
        # Try fields in order of preference
        for field in ["raw_text", "content", "text", "transcript", "main_text"]:
            if field in result['ocr_contents'] and result['ocr_contents'][field]:
                raw_text = result['ocr_contents'][field]
                break
    
    # Extract subject tags if not already present or enhance existing ones
    if 'topics' not in result or not result['topics']:
        result['topics'] = extract_subject_tags(result, raw_text, preprocessing_options)
    
    return result