File size: 12,416 Bytes
d86aa1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""
@author: cuny
@file: ThinFace.py
@time: 2022/7/2 15:50
@description:
瘦脸算法,用到了图像局部平移法
先使用人脸关键点检测,然后再使用图像局部平移法
需要注意的是,这部分不会包含dlib人脸关键点检测,因为考虑到模型载入的问题
"""
import cv2
import math
import numpy as np


class TranslationWarp(object):
    """
    本类包含瘦脸算法,由于瘦脸算法包含了很多个版本,所以以类的方式呈现
    前两个算法没什么好讲的,网上资料很多
    第三个采用numpy内部的自定义函数处理,在处理速度上有一些提升
    最后采用cv2.map算法,处理速度大幅度提升
    """

    # 瘦脸
    @staticmethod
    def localTranslationWarp(srcImg, startX, startY, endX, endY, radius):
        # 双线性插值法
        def BilinearInsert(src, ux, uy):
            w, h, c = src.shape
            if c == 3:
                x1 = int(ux)
                x2 = x1 + 1
                y1 = int(uy)
                y2 = y1 + 1
                part1 = src[y1, x1].astype(np.float64) * (float(x2) - ux) * (float(y2) - uy)
                part2 = src[y1, x2].astype(np.float64) * (ux - float(x1)) * (float(y2) - uy)
                part3 = src[y2, x1].astype(np.float64) * (float(x2) - ux) * (uy - float(y1))
                part4 = src[y2, x2].astype(np.float64) * (ux - float(x1)) * (uy - float(y1))
                insertValue = part1 + part2 + part3 + part4
                return insertValue.astype(np.int8)

        ddradius = float(radius * radius)  # 圆的半径
        copyImg = srcImg.copy()  # copy后的图像矩阵
        # 计算公式中的|m-c|^2
        ddmc = (endX - startX) * (endX - startX) + (endY - startY) * (endY - startY)
        H, W, C = srcImg.shape  # 获取图像的形状
        for i in range(W):
            for j in range(H):
                # # 计算该点是否在形变圆的范围之内
                # # 优化,第一步,直接判断是会在(startX,startY)的矩阵框中
                if math.fabs(i - startX) > radius and math.fabs(j - startY) > radius:
                    continue
                distance = (i - startX) * (i - startX) + (j - startY) * (j - startY)
                if distance < ddradius:
                    # 计算出(i,j)坐标的原坐标
                    # 计算公式中右边平方号里的部分
                    ratio = (ddradius - distance) / (ddradius - distance + ddmc)
                    ratio = ratio * ratio
                    # 映射原位置
                    UX = i - ratio * (endX - startX)
                    UY = j - ratio * (endY - startY)

                    # 根据双线性插值法得到UX,UY的值
                    # start_ = time.time()
                    value = BilinearInsert(srcImg, UX, UY)
                    # print(f"双线性插值耗时;{time.time() - start_}")
                    # 改变当前 i ,j的值
                    copyImg[j, i] = value
        return copyImg

    # 瘦脸pro1, 限制了for循环的遍历次数
    @staticmethod
    def localTranslationWarpLimitFor(srcImg, startP: np.matrix, endP: np.matrix, radius: float):
        startX, startY = startP[0, 0], startP[0, 1]
        endX, endY = endP[0, 0], endP[0, 1]

        # 双线性插值法
        def BilinearInsert(src, ux, uy):
            w, h, c = src.shape
            if c == 3:
                x1 = int(ux)
                x2 = x1 + 1
                y1 = int(uy)
                y2 = y1 + 1
                part1 = src[y1, x1].astype(np.float64) * (float(x2) - ux) * (float(y2) - uy)
                part2 = src[y1, x2].astype(np.float64) * (ux - float(x1)) * (float(y2) - uy)
                part3 = src[y2, x1].astype(np.float64) * (float(x2) - ux) * (uy - float(y1))
                part4 = src[y2, x2].astype(np.float64) * (ux - float(x1)) * (uy - float(y1))
                insertValue = part1 + part2 + part3 + part4
                return insertValue.astype(np.int8)

        ddradius = float(radius * radius)  # 圆的半径
        copyImg = srcImg.copy()  # copy后的图像矩阵
        # 计算公式中的|m-c|^2
        ddmc = (endX - startX) ** 2 + (endY - startY) ** 2
        # 计算正方形的左上角起始点
        startTX, startTY = (startX - math.floor(radius + 1), startY - math.floor((radius + 1)))
        # 计算正方形的右下角的结束点
        endTX, endTY = (startX + math.floor(radius + 1), startY + math.floor((radius + 1)))
        # 剪切srcImg
        srcImg = srcImg[startTY: endTY + 1, startTX: endTX + 1, :]
        # db.cv_show(srcImg)
        # 裁剪后的图像相当于在x,y都减少了startX - math.floor(radius + 1)
        # 原本的endX, endY在切后的坐标点
        endX, endY = (endX - startX + math.floor(radius + 1), endY - startY + math.floor(radius + 1))
        # 原本的startX, startY剪切后的坐标点
        startX, startY = (math.floor(radius + 1), math.floor(radius + 1))
        H, W, C = srcImg.shape  # 获取图像的形状
        for i in range(W):
            for j in range(H):
                # 计算该点是否在形变圆的范围之内
                # 优化,第一步,直接判断是会在(startX,startY)的矩阵框中
                # if math.fabs(i - startX) > radius and math.fabs(j - startY) > radius:
                #     continue
                distance = (i - startX) * (i - startX) + (j - startY) * (j - startY)
                if distance < ddradius:
                    # 计算出(i,j)坐标的原坐标
                    # 计算公式中右边平方号里的部分
                    ratio = (ddradius - distance) / (ddradius - distance + ddmc)
                    ratio = ratio * ratio
                    # 映射原位置
                    UX = i - ratio * (endX - startX)
                    UY = j - ratio * (endY - startY)

                    # 根据双线性插值法得到UX,UY的值
                    # start_ = time.time()
                    value = BilinearInsert(srcImg, UX, UY)
                    # print(f"双线性插值耗时;{time.time() - start_}")
                    # 改变当前 i ,j的值
                    copyImg[j + startTY, i + startTX] = value
        return copyImg

    # # 瘦脸pro2,采用了numpy自定义函数做处理
    # def localTranslationWarpNumpy(self, srcImg, startP: np.matrix, endP: np.matrix, radius: float):
    #     startX , startY = startP[0, 0], startP[0, 1]
    #     endX, endY = endP[0, 0], endP[0, 1]
    #     ddradius = float(radius * radius)  # 圆的半径
    #     copyImg = srcImg.copy()  # copy后的图像矩阵
    #     # 计算公式中的|m-c|^2
    #     ddmc = (endX - startX)**2 + (endY - startY)**2
    #     # 计算正方形的左上角起始点
    #     startTX, startTY = (startX - math.floor(radius + 1), startY - math.floor((radius + 1)))
    #     # 计算正方形的右下角的结束点
    #     endTX, endTY = (startX + math.floor(radius + 1), startY + math.floor((radius + 1)))
    #     # 剪切srcImg
    #     self.thinImage = srcImg[startTY : endTY + 1, startTX : endTX + 1, :]
    #     # s = self.thinImage
    #     # db.cv_show(srcImg)
    #     # 裁剪后的图像相当于在x,y都减少了startX - math.floor(radius + 1)
    #     # 原本的endX, endY在切后的坐标点
    #     endX, endY = (endX - startX + math.floor(radius + 1), endY - startY + math.floor(radius + 1))
    #     # 原本的startX, startY剪切后的坐标点
    #     startX ,startY = (math.floor(radius + 1), math.floor(radius + 1))
    #     H, W, C = self.thinImage.shape  # 获取图像的形状
    #     index_m = np.arange(H * W).reshape((H, W))
    #     triangle_ufunc = np.frompyfunc(self.process, 9, 3)
    #     # start_ = time.time()
    #     finalImgB, finalImgG, finalImgR = triangle_ufunc(index_m, self, W, ddradius, ddmc, startX, startY, endX, endY)
    #     finaleImg = np.dstack((finalImgB, finalImgG, finalImgR)).astype(np.uint8)
    #     finaleImg = np.fliplr(np.rot90(finaleImg, -1))
    #     copyImg[startTY: endTY + 1, startTX: endTX + 1, :] = finaleImg
    #     # print(f"图像处理耗时;{time.time() - start_}")
    #     # db.cv_show(copyImg)
    #     return copyImg

    # 瘦脸pro3,采用opencv内置函数
    @staticmethod
    def localTranslationWarpFastWithStrength(srcImg, startP: np.matrix, endP: np.matrix, radius, strength: float = 100.):
        """
        采用opencv内置函数
        Args:
            srcImg: 源图像
            startP: 起点位置
            endP: 终点位置
            radius: 处理半径
            strength: 瘦脸强度,一般取100以上

        Returns:

        """
        startX, startY = startP[0, 0], startP[0, 1]
        endX, endY = endP[0, 0], endP[0, 1]
        ddradius = float(radius * radius)
        # copyImg = np.zeros(srcImg.shape, np.uint8)
        # copyImg = srcImg.copy()

        maskImg = np.zeros(srcImg.shape[:2], np.uint8)
        cv2.circle(maskImg, (startX, startY), math.ceil(radius), (255, 255, 255), -1)

        K0 = 100 / strength

        # 计算公式中的|m-c|^2
        ddmc_x = (endX - startX) * (endX - startX)
        ddmc_y = (endY - startY) * (endY - startY)
        H, W, C = srcImg.shape

        mapX = np.vstack([np.arange(W).astype(np.float32).reshape(1, -1)] * H)
        mapY = np.hstack([np.arange(H).astype(np.float32).reshape(-1, 1)] * W)

        distance_x = (mapX - startX) * (mapX - startX)
        distance_y = (mapY - startY) * (mapY - startY)
        distance = distance_x + distance_y
        K1 = np.sqrt(distance)
        ratio_x = (ddradius - distance_x) / (ddradius - distance_x + K0 * ddmc_x)
        ratio_y = (ddradius - distance_y) / (ddradius - distance_y + K0 * ddmc_y)
        ratio_x = ratio_x * ratio_x
        ratio_y = ratio_y * ratio_y

        UX = mapX - ratio_x * (endX - startX) * (1 - K1 / radius)
        UY = mapY - ratio_y * (endY - startY) * (1 - K1 / radius)

        np.copyto(UX, mapX, where=maskImg == 0)
        np.copyto(UY, mapY, where=maskImg == 0)
        UX = UX.astype(np.float32)
        UY = UY.astype(np.float32)
        copyImg = cv2.remap(srcImg, UX, UY, interpolation=cv2.INTER_LINEAR)
        return copyImg


def thinFace(src, landmark, place: int = 0, strength=30.):
    """
    瘦脸程序接口,输入人脸关键点信息和强度,即可实现瘦脸
    注意处理四通道图像
    Args:
        src: 原图
        landmark: 关键点信息
        place: 选择瘦脸区域,为0-4之间的值
        strength: 瘦脸强度,输入值在0-10之间,如果小于或者等于0,则不瘦脸

    Returns:
        瘦脸后的图像
    """
    strength = min(100., strength * 10.)
    if strength <= 0.:
        return src
    # 也可以设置瘦脸区域
    place = max(0, min(4, int(place)))
    left_landmark = landmark[4 + place]
    left_landmark_down = landmark[6 + place]
    right_landmark = landmark[13 + place]
    right_landmark_down = landmark[15 + place]
    endPt = landmark[58]
    # 计算第4个点到第6个点的距离作为瘦脸距离
    r_left = math.sqrt(
        (left_landmark[0, 0] - left_landmark_down[0, 0]) ** 2 +
        (left_landmark[0, 1] - left_landmark_down[0, 1]) ** 2
    )

    # 计算第14个点到第16个点的距离作为瘦脸距离
    r_right = math.sqrt((right_landmark[0, 0] - right_landmark_down[0, 0]) ** 2 +
                        (right_landmark[0, 1] - right_landmark_down[0, 1]) ** 2)
    # 瘦左边脸
    thin_image = TranslationWarp.localTranslationWarpFastWithStrength(src, left_landmark[0], endPt[0], r_left, strength)
    # 瘦右边脸
    thin_image = TranslationWarp.localTranslationWarpFastWithStrength(thin_image, right_landmark[0], endPt[0], r_right, strength)
    return thin_image


if __name__ == "__main__":
    import os
    from hycv.FaceDetection68.faceDetection68 import FaceDetection68
    local_file = os.path.dirname(__file__)
    PREDICTOR_PATH = f"{local_file}/weights/shape_predictor_68_face_landmarks.dat"  # 关键点检测模型路径
    fd68 = FaceDetection68(model_path=PREDICTOR_PATH)
    input_image = cv2.imread("test_image/4.jpg", -1)
    _, landmark_, _ = fd68.facePoints(input_image)
    output_image = thinFace(input_image, landmark_, strength=30.2)
    cv2.imwrite("thinFaceCompare.png", np.hstack((input_image, output_image)))