File size: 1,002 Bytes
580a5a7
67628a6
580a5a7
71e4921
67628a6
71e4921
 
67628a6
580a5a7
fe9bde4
 
 
580a5a7
 
 
 
 
 
 
 
abff1a0
 
580a5a7
abff1a0
fe9bde4
abff1a0
 
580a5a7
 
fe9bde4
580a5a7
fe9bde4
580a5a7
abff1a0
fe9bde4
580a5a7
 
 
fe9bde4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
from llama_cpp import Llama

# Load the model
llm = Llama.from_pretrained(
    repo_id="bartowski/Marco-o1-GGUF",
    filename="Marco-o1-Q4_K_M.gguf",
)

# Access the tokenizer from the Llama model
tokenizer = llm.get_tokenizer()

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # Initialize an empty list to hold tokenized messages
    tokenized_messages = []

    # Tokenize the system message
    tokenized_messages.append(tokenizer.encode(system_message))

    # Tokenize the history messages
    for val in history:
        if val[0]:
            tokenized_messages.append(tokenizer.encode(val[0]))  # User message
        if val[1]:
            tokenized_messages.append(tokenizer.encode(val[1]))  # Assistant message

    # Tokenize the current user message
    tokenized_messages.append(tokenizer.encode(message))

    response = ""

    # Use llm.create_completion with tokenized message