Spaces:
Runtime error
Runtime error
File size: 1,081 Bytes
a262b22 18cb184 a262b22 18cb184 9c253fd fd63c99 18cb184 fd63c99 a262b22 fd63c99 18cb184 fd63c99 a262b22 ee70033 a262b22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from llama_cpp import Llama
import os
# Path to the first shard of the model
model_path = "DeepSeek-R1-Zero-Q4_K_M/DeepSeek-R1-Zero-Q4_K_M-00001-of-00009.gguf"
# Debugging: Verify working directory and model path
print("Current working directory:", os.getcwd())
print("Full model path:", os.path.join(os.getcwd(), model_path))
# Initialize the model
try:
model = Llama(model_path=model_path, n_threads=8)
except ValueError as e:
print(f"Error initializing the model: {e}")
exit(1)
# Define the prediction function
def predict(prompt):
try:
# Generate output using the model
output = model(prompt)
# Extract and return the text from the response
return output["choices"][0]["text"]
except Exception as e:
return f"Error during inference: {e}"
# Create the Gradio interface
iface = gr.Interface(
fn=predict,
inputs="text",
outputs="text",
title="DeepSeek-R1-Zero",
description="A Gradio interface for the DeepSeek-R1-Zero model"
)
if __name__ == "__main__":
iface.launch()
|