Spaces:
Sleeping
Sleeping
File size: 1,285 Bytes
9232ed6 c7fc9c2 9232ed6 36a83db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import torch
import requests
import os
model_id = "distil-whisper/distil-large-v2"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
def transcribe_audio(audio_file):
recorded_filename = audio_file.name
if os.path.exists(recorded_filename):
results = pipe(recorded_filename)
return results["text"]
else:
return "Error: No audio file uploaded."
inputs = gr.Audio(sources="upload", type="filepath")
outputs = gr.Textbox()
interface = gr.Interface(fn=transcribe_audio, inputs=inputs, outputs=outputs, title="Audio Transcription App")
interface.launch() |