File size: 11,241 Bytes
9ff0424
 
 
 
0a72a5a
9ff0424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
665f810
 
 
9ff0424
 
 
35b2fe2
 
 
 
665f810
 
35b2fe2
 
9e80ea1
66ff415
665f810
9ff0424
 
 
 
 
 
 
 
 
665f810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ff0424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
665f810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ff0424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
665f810
 
 
9ff0424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ff415
9ff0424
 
665f810
9ff0424
 
 
 
 
 
 
 
665f810
9ff0424
 
 
665f810
9ff0424
 
665f810
9ff0424
 
 
 
665f810
 
9ff0424
 
 
665f810
 
 
9ff0424
 
 
 
66ff415
 
9ff0424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
665f810
9ff0424
 
 
 
 
665f810
9ff0424
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
### PRE ###
import os
os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
os.system('make -C ./whisper.cpp')
MODELS_TO_DOWNLOAD = ['base', 'small', 'tiny', 'medium'] # ['tiny', 'small', 'base', 'medium', 'large']

for model_name in MODELS_TO_DOWNLOAD:
    os.system(f'bash ./whisper.cpp/models/download-ggml-model.sh {model_name}')

### BODY ### 

import os
import requests
import json
import base64

import gradio as gr
from pathlib import Path
import pysrt
import pandas as pd
import re
import time

import subprocess
import shlex

from pytube import YouTube
import torch

INTRO_MSG = '''
#### <p>There are many not very widely spoken languages for which it is quite hard to find learning materials, 
especially well dubbed videos (target language video with target language subs). 
This tool will hopefully transcribe and add subs to your videos. 
At least for me this is a nice tool to practice both listening and reading skills.
This is a 'one-click' variant of similar spaces found here on the HF hub.
<p>Speech Recognition is based on models from OpenAI Whisper - https://github.com/openai/whisper
<p> This space is using the c++ implementation by https://github.com/ggerganov/whisper.cpp 
'''


whisper_models = MODELS_TO_DOWNLOAD #["medium"]#["base", "small", "medium", "large", "base.en"]

custom_models = []
combined_models = []
combined_models.extend(whisper_models)
combined_models.extend(custom_models)

LANGUAGES = {
    "bg": "Bulgarian",
    "en": "English",
    "zh": "Chinese",
    "de": "German",
    "es": "Spanish",
    "ru": "Russian",
    "ko": "Korean",
    "fr": "French",
    "ja": "Japanese",
    "pt": "Portuguese",
    "tr": "Turkish",
    "pl": "Polish",
    "ca": "Catalan",
    "nl": "Dutch",
    "ar": "Arabic",
    "sv": "Swedish",
    "it": "Italian",
    "id": "Indonesian",
    "hi": "Hindi",
    "fi": "Finnish",
    "vi": "Vietnamese",
    "he": "Hebrew",
    "uk": "Ukrainian",
    "el": "Greek",
    "ms": "Malay",
    "cs": "Czech",
    "ro": "Romanian",
    "da": "Danish",
    "hu": "Hungarian",
    "ta": "Tamil",
    "no": "Norwegian",
    "th": "Thai",
    "ur": "Urdu",
    "hr": "Croatian",
    "lt": "Lithuanian",
    "la": "Latin",
    "mi": "Maori",
    "ml": "Malayalam",
    "cy": "Welsh",
    "sk": "Slovak",
    "te": "Telugu",
    "fa": "Persian",
    "lv": "Latvian",
    "bn": "Bengali",
    "sr": "Serbian",
    "az": "Azerbaijani",
    "sl": "Slovenian",
    "kn": "Kannada",
    "et": "Estonian",
    "mk": "Macedonian",
    "br": "Breton",
    "eu": "Basque",
    "is": "Icelandic",
    "hy": "Armenian",
    "ne": "Nepali",
    "mn": "Mongolian",
    "bs": "Bosnian",
    "kk": "Kazakh",
    "sq": "Albanian",
    "sw": "Swahili",
    "gl": "Galician",
    "mr": "Marathi",
    "pa": "Punjabi",
    "si": "Sinhala",
    "km": "Khmer",
    "sn": "Shona",
    "yo": "Yoruba",
    "so": "Somali",
    "af": "Afrikaans",
    "oc": "Occitan",
    "ka": "Georgian",
    "be": "Belarusian",
    "tg": "Tajik",
    "sd": "Sindhi",
    "gu": "Gujarati",
    "am": "Amharic",
    "yi": "Yiddish",
    "lo": "Lao",
    "uz": "Uzbek",
    "fo": "Faroese",
    "ht": "Haitian creole",
    "ps": "Pashto",
    "tk": "Turkmen",
    "nn": "Nynorsk",
    "mt": "Maltese",
    "sa": "Sanskrit",
    "lb": "Luxembourgish",
    "my": "Myanmar",
    "bo": "Tibetan",
    "tl": "Tagalog",
    "mg": "Malagasy",
    "as": "Assamese",
    "tt": "Tatar",
    "haw": "Hawaiian",
    "ln": "Lingala",
    "ha": "Hausa",
    "ba": "Bashkir",
    "jw": "Javanese",
    "su": "Sundanese",
}

# language code lookup by name, with a few language aliases
source_languages = {
    **{language: code for code, language in LANGUAGES.items()}
}

source_language_list = [key[0] for key in source_languages.items()]

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"DEVICE IS: {device}")

def get_youtube(video_url):
    yt = YouTube(video_url)
    abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
    print(f"Download complete - {abs_video_path}")
    return abs_video_path

def run_command(command, app_state):
    print(command)
    process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)
    while process.poll() is None:
        time.sleep(5)
        output = process.stdout.readline()
        if output == '' and process.poll() is not None:
            break
        if output:
            decoded = output.decode()
            print(decoded)
            app_state['output'] += decoded

    rc = process.poll()
    print(f'{cmd} ret code is {rc}')
    return rc

def speech_to_text(video_file_path, 
                   selected_source_lang, 
                   whisper_model,
                   app_state):
    """    
    Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
    This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
    """
        
    if(video_file_path == None):
        raise ValueError("Error no video input")
        
    print(video_file_path)
    _,file_ending = os.path.splitext(f'{video_file_path}')
    input_wav_file = video_file_path.replace(file_ending, ".wav")
    srt_path = input_wav_file + ".srt"
    vtt_path = input_wav_file + ".vtt"
    try:
        print(f'file enging is {file_ending}, starting conversion to wav')
        subs_paths = video_file_path.replace(file_ending, ".wav")

        if os.path.exists(subs_paths):
            os.remove(subs_paths)
            
        os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{subs_paths}"')
        print("conversion to wav ready")
    
    except Exception as e:
        raise RuntimeError("Error Running inference with local model", e)
               
    try:
        print("starting whisper c++")
        os.system(f'rm -f {srt_path}')
        run_command(f'./whisper.cpp/main "{input_wav_file}" -t {os.cpu_count()} -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt -ovtt',
                   app_state)
#         os.system(f'./whisper.cpp/main "{input_wav_file}" -t {os.cpu_count()} -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt -ovtt')
        print("whisper c++ finished")
    except Exception as e:
        raise RuntimeError("Error running Whisper cpp model")
    
    print(f'Subtitles path {srt_path}, {vtt_path}')
    return [vtt_path, srt_path]
    
def create_video_player(subs_files, video_in):
    print(f"create_video_player - {subs_files}, {video_in}")
                        
    with open(subs_files[0], "rb") as file:
        subtitle_base64 = base64.b64encode(file.read())
    
    with open(video_in, "rb") as file:
        video_base64 = base64.b64encode(file.read())

    video_player = f'''<video id="video" controls preload="metadata">
      <source src="data:video/mp4;base64,{str(video_base64)[2:-1]}" type="video/mp4" />
      <track
        label="English"
        kind="subtitles"
        srclang="en"
        src="data:text/vtt;base64,{str(subtitle_base64)[2:-1]}"
        default />
    </video>
    '''
    
    print('create_video_player - Done')
    return video_player


# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_out = gr.Video(label="Video Out", mirror_webcam=False)

selected_source_lang = gr.Dropdown(choices=source_language_list, 
                                   type="value", 
                                   value= source_language_list[0], #"Let the model analyze", 
                                   label="Spoken language in video", 
                                   interactive=True)
selected_whisper_model = gr.Dropdown(choices=whisper_models, 
                                     type="value", 
                                     value=whisper_models[0],#"base", 
                                     label="Selected Whisper model", 
                                     interactive=True)

subtitle_files = gr.File(
                label="Download subtitles",
                file_count="multiple",
                type="file",
                interactive=False,
            )

video_player = gr.HTML('<p>video will be played here')
eventslider = gr.Slider(visible=False)
status_msg = gr.Markdown('Status')
output_label = gr.Textbox('', interactive=False, show_label=False)

demo = gr.Blocks()
demo.encrypt = False

def set_app_msg(app_state, msg):
    app_state['status_msg'] = msg

def transcribe(app_state, youtube_url_in, selected_source_lang, selected_whisper_model):
    app_state['output'] = ''
    set_app_msg(app_state, 'Downloading the movie ...')
    video_file_path = get_youtube(youtube_url_in)
    set_app_msg(app_state, f'Running the speech to text model {selected_source_lang}/{selected_whisper_model}. This can take some time.')
    subtitle_files = speech_to_text(video_file_path, selected_source_lang, selected_whisper_model, app_state)
    set_app_msg(app_state, f'Creating the video player ...')
    video_player = create_video_player(subtitle_files, video_file_path)
    set_app_msg(app_state, f'Transcribing done, generating video player')
    return subtitle_files, video_player
    

def on_change_event(app_state):
    print(f'Running! {app_state}')
    return app_state['status_msg'], app_state['output']

with demo:
    app_state = gr.State({
                          'running': False,
                          'status_msg': '',
                          'output': ''
                         })
    
    with gr.Row():
        with gr.Column():
            gr.Markdown(INTRO_MSG)
            gr.Markdown('''### Copy any non-private Youtube video URL to box below or click one of the examples.''')
            examples = gr.Examples(examples=["https://www.youtube.com/watch?v=UjAn3Pza3qo", "https://www.youtube.com/watch?v=oOZivhYfPD4"], 
               label="Examples", inputs=[youtube_url_in])
            # Inspiration from https://huggingface.co/spaces/vumichien/whisper-speaker-diarization
            
    with gr.Row():
        with gr.Column():
            youtube_url_in.render()
            selected_source_lang.render()
            selected_whisper_model.render()
            
            download_youtube_btn = gr.Button("Transcribe the video")
            download_youtube_btn.click(transcribe, [app_state, youtube_url_in, selected_source_lang, selected_whisper_model], [subtitle_files, video_player])
            
            eventslider.render()
            status_msg.render()
            output_label.render()
            subtitle_files.render()
            video_player.render()
    with gr.Row():
        gr.Markdown('This app is based on [this code](https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles/tree/main) by RASMUS.')

    dep = demo.load(on_change_event, inputs=[app_state], outputs=[status_msg, output_label], every=10)


#### RUN ###
is_kaggle = os.environ.get('KAGGLE_KERNEL_RUN_TYPE')
print(is_kaggle)

if is_kaggle:
    demo.queue().launch(share=True, debug=True)
else:
    demo.queue().launch()