Spaces:
Build error
Build error
File size: 15,788 Bytes
7dce6dc 4c04f50 7dce6dc d6448a5 7fd4e54 7dce6dc a1b70da 7dce6dc 4c04f50 7dce6dc 4c04f50 7dce6dc 52a9494 d6448a5 4c04f50 f5417e9 f6e4487 7dce6dc 5590f17 7dce6dc 52a9494 7dce6dc 52a9494 7dce6dc d6448a5 7fd4e54 7dce6dc 811503f 02e4e96 811503f d6448a5 811503f d6448a5 7dce6dc 7fd4e54 7dce6dc 7fd4e54 7dce6dc d6448a5 811503f d6448a5 7dce6dc 7fd4e54 d6448a5 4c04f50 d6448a5 811503f d6448a5 811503f d6448a5 4c04f50 d6448a5 7fd4e54 d6448a5 f6e4487 7dce6dc a1b70da 7dce6dc 811503f 7dce6dc a1b70da 7dce6dc 52a9494 a1b70da 5590f17 d6448a5 5590f17 d6448a5 5590f17 d6448a5 5590f17 7dce6dc 5590f17 a1b70da 52a9494 a1b70da 52a9494 7dce6dc 52a9494 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
"""Gradiobee."""
# pylint: disable=invalid-name, too-many-arguments, too-many-branches, too-many-locals, too-many-statements, unused-variable, too-many-return-statements, unused-import
from pathlib import Path
import platform
import inspect
from itertools import zip_longest
# import tempfile
from sklearn.cluster import DBSCAN
from fastlid import fastlid
from logzero import logger
from icecream import ic
import numpy as np # noqa
import pandas as pd
import matplotlib # noqa
import matplotlib.pyplot as plt
import seaborn as sns
# from radiobee.process_upload import process_upload
from radiobee.files2df import files2df
from radiobee.file2text import file2text
from radiobee.lists2cmat import lists2cmat
from radiobee.gen_pset import gen_pset
from radiobee.gen_aset import gen_aset
from radiobee.align_texts import align_texts
from radiobee.cmat2tset import cmat2tset
from radiobee.trim_df import trim_df
from radiobee.error_msg import error_msg
from radiobee.text2lists import text2lists
from radiobee.align_sents import align_sents
from radiobee.shuffle_sents import shuffle_sents # type: ignore
from radiobee.paras2sents import paras2sents # type: ignore
uname = platform.uname()
HFSPACES = False
if "amzn2" in uname.release: # on hf spaces
HFSPACES = True
sns.set()
sns.set_style("darkgrid")
pd.options.display.float_format = "{:,.2f}".format
debug = False
debug = True
def gradiobee( # noqa
file1,
file2,
tf_type,
idf_type,
dl_type,
norm,
eps,
min_samples,
# debug=False,
sent_ali_algo,
):
"""Process inputs and return outputs."""
logger.debug(" *debug* ")
# possible further switchse
# para_sent: para/sent
# sent_ali: default/radio/gale-church
plot_dia = True # noqa
# outputs: check return
# if outputs is modified, also need to modify error_msg's outputs
# convert "None" to None for those Radio types
for _ in [idf_type, dl_type, norm]:
if _ in "None":
_ = None
# logger.info("file1: *%s*, file2: *%s*", file1, file2)
if file2 is not None:
logger.info("file1.name: *%s*, file2.name: *%s*", file1.name, file2.name)
else:
logger.info("file1.name: *%s*, file2: *%s*", file1.name, file2)
# bypass if file1 or file2 is str input
# if not (isinstance(file1, str) or isinstance(file2, str)):
text1 = file2text(file1)
if file2 is None:
logger.debug("file2 is None")
text2 = ""
else:
logger.debug("file2.name: %s", file2.name)
text2 = file2text(file2)
# if not text1.strip() or not text2.strip():
if not text1.strip():
msg = (
"file 1 is apparently empty... Upload a none empty file and try again."
# f"text1[:10]: [{text1[:10]}], "
# f"text2[:10]: [{text2[:10]}]"
)
return error_msg(msg)
# single file
# when text2 is empty
# process file1/text1: split text1 to text1 text2 to zh-en
len_max = 2000
if not text2.strip(): # empty file2
_ = [elm.strip() for elm in text1.splitlines() if elm.strip()]
if not _: # essentially empty file1
return error_msg("Nothing worthy of processing in file 1")
logger.info(
"single file: len %s, max %s",
len(_), 2 * len_max
)
# exit if there are too many lines
if len(_) > 2 * len_max:
return error_msg(f" Too many lines ({len(_)}) > {2 * len_max}, alignment op halted, sorry.", "info")
_ = zip_longest(_, [""])
_ = pd.DataFrame(_, columns=["text1", "text2"])
df_trimmed = trim_df(_)
# text1 = loadtext("data/test-dual.txt")
list1, list2 = text2lists(text1)
lang1 = text2lists.lang1
lang2 = text2lists.lang2
offset = text2lists.offset # noqa
_ = """
ax = sns.heatmap(lists2cmat(list1, list2), cmap="gist_earth_r") # ax=plt.gca()
ax.invert_yaxis()
ax.set(
xlabel=lang1,
ylabel=lang2,
title=f"cos similary heatmap \n(offset={offset})",
)
plt_loc = "img/plt.png"
plt.savefig(plt_loc)
# """
# output_plot = plt_loc # for gr.outputs.Image
#
_ = zip_longest(list1, list2, fillvalue="")
df_aligned = pd.DataFrame(
_,
columns=["text1", "tex2"]
)
file_dl = Path(f"{Path(file1.name).stem[:-8]}-{lang1}-{lang2}.csv")
file_dl_xlsx = Path(
f"{Path(file1.name).stem[:-8]}-{lang1}-{lang2}.xlsx"
)
# return df_trimmed, output_plot, file_dl, file_dl_xlsx, df_aligned
# end if single file
# not single file
else: # file1 file 2: proceed
fastlid.set_languages = None
lang1, _ = fastlid(text1)
lang2, _ = fastlid(text2)
df1 = files2df(file1, file2)
list1 = [elm for elm in df1.text1 if elm]
list2 = [elm for elm in df1.text2 if elm]
# len1 = len(list1) # noqa
# len2 = len(list2) # noqa
# exit if there are too many lines
len12 = len(list1) + len(list2)
logger.info(
"fast track: len1 %s, len2 %s, tot %s, max %s",
len(list1), len(list2), len(list1) + len(list2), 3 * len_max
)
if len12 > 3 * len_max:
return error_msg(f" Too many lines ({len(list1)} + {len(list2)} > {3 * len_max}), alignment op halted, sorry.", "info")
file_dl = Path(f"{Path(file1.name).stem[:-8]}-{Path(file2.name).stem[:-8]}.csv")
file_dl_xlsx = Path(
f"{Path(file1.name).stem[:-8]}-{Path(file2.name).stem[:-8]}.xlsx"
)
df_trimmed = trim_df(df1)
# --- end else single
lang_en_zh = ["en", "zh"]
logger.debug("lang1: %s, lang2: %s", lang1, lang2)
if debug:
ic(f" lang1: {lang1}, lang2: {lang2}")
ic("fast track? ", lang1 in lang_en_zh and lang2 in lang_en_zh)
# fast track
if lang1 in lang_en_zh and lang2 in lang_en_zh:
try:
cmat = lists2cmat(
list1,
list2,
tf_type=tf_type,
idf_type=idf_type,
dl_type=dl_type,
norm=norm,
)
except Exception as exc:
logger.error(exc)
return error_msg(exc)
# slow track
else:
logger.info(
"slow track: len1 %s, len2 %s, tot: %s, max %s",
len(list1), len(list2), len(list1) + len(list2),
3 * len_max
)
if len(list1) + len(list2) > 3 * len_max:
msg = (
f" len1 {len(list1)} + len2 {len(list2)} > {3 * len_max}. "
"This will take too long to complete "
"and will hog this experimental server and hinder "
"other users from trying the service. "
"Aborted...sorry"
)
return error_msg(msg, "info ")
try:
from radiobee.model_s import model_s # pylint: disable=import-outside-toplevel
vec1 = model_s.encode(list1)
vec2 = model_s.encode(list2)
# cmat = vec1.dot(vec2.T)
cmat = vec2.dot(vec1.T)
except Exception as exc:
logger.error(exc)
_ = inspect.currentframe().f_lineno # type: ignore
return error_msg(
f"{exc}, {Path(__file__).name} ln{_}, period"
)
tset = pd.DataFrame(cmat2tset(cmat))
tset.columns = ["x", "y", "cos"]
_ = """
df_trimmed = pd.concat(
[
df1.iloc[:4, :],
pd.DataFrame(
[
[
"...",
"...",
]
],
columns=df1.columns,
),
df1.iloc[-4:, :],
],
ignore_index=1,
)
# """
# process list1, list2 to obtained df_aligned
# quick fix ValueError: not enough values to unpack (expected at least 1, got 0)
# fixed in gen_pet, but we leave the loop here
for min_s in range(min_samples):
logger.info(" min_samples, using %s", min_samples - min_s)
try:
pset = gen_pset(
cmat,
eps=eps,
min_samples=min_samples - min_s,
delta=7,
)
break
except ValueError:
logger.info(" decrease min_samples by %s", min_s + 1)
continue
except Exception as e:
logger.error(e)
continue
else:
# break should happen above when min_samples = 2
raise Exception("bummer, this shouldn't happen, probably another bug")
min_samples = gen_pset.min_samples
# will result in error message:
# UserWarning: Starting a Matplotlib GUI outside of
# the main thread will likely fail."
_ = """
plot_cmat(
cmat,
eps=eps,
min_samples=min_samples,
xlabel=lang1,
ylabel=lang2,
)
# """
# move plot_cmat's code to the main thread here
# to make it work
xlabel = lang1
ylabel = lang2
len1, len2 = cmat.shape
ylim, xlim = len1, len2
# does not seem to show up
ic(f" len1 (ylim): {len1}, len2 (xlim): {len2}")
logger.debug(" len1 (ylim): %s, len2 (xlim): %s", len1, len2)
if debug:
print(f" len1 (ylim): {len1}, len2 (xlim): {len2}")
df_ = pd.DataFrame(cmat2tset(cmat))
df_.columns = ["x", "y", "cos"]
sns.set()
sns.set_style("darkgrid")
# close all existing figures, necesssary for hf spaces
plt.close("all")
# if sys.platform not in ["win32", "linux"]:
# going for noninterative
# to cater for Mac, thanks to WhiteFox
plt.switch_backend("Agg")
# figsize=(13, 8), (339, 212) mm on '1280x800+0+0'
fig = plt.figure(figsize=(13, 8))
# gs = fig.add_gridspec(2, 2, wspace=0.4, hspace=0.58)
gs = fig.add_gridspec(1, 2, wspace=0.4, hspace=0.58)
ax_heatmap = fig.add_subplot(gs[0, 0]) # ax2
ax0 = fig.add_subplot(gs[0, 1])
# ax1 = fig.add_subplot(gs[1, 0])
cmap = "viridis_r"
sns.heatmap(cmat, cmap=cmap, ax=ax_heatmap).invert_yaxis()
ax_heatmap.set_xlabel(xlabel)
ax_heatmap.set_ylabel(ylabel)
ax_heatmap.set_title("cos similarity heatmap")
fig.suptitle(f"alignment projection\n(eps={eps}, min_samples={min_samples})")
_ = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ > -1
# _x = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ < 0
_x = ~_
# max cos along columns
df_.plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax0)
# outliers
df_[_x].plot.scatter("x", "y", c="r", marker="x", alpha=0.6, ax=ax0)
ax0.set_xlabel(xlabel)
ax0.set_ylabel(ylabel)
ax0.set_xlim(xmin=0, xmax=xlim)
ax0.set_ylim(ymin=0, ymax=ylim)
ax0.set_title(
"max along columns (x: outliers)\n"
"potential aligned pairs (green line), "
f"{round(sum(_) / xlim, 2):.0%}"
)
plt_loc = "img/plt.png"
ic(f" plotting to {plt_loc}")
plt.savefig(plt_loc)
# clustered
# df_[_].plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax1)
# ax1.set_xlabel(xlabel)
# ax1.set_ylabel(ylabel)
# ax1.set_xlim(0, len1)
# ax1.set_title(f"potential aligned pairs ({round(sum(_) / len1, 2):.0%})")
# end of plot_cmat
src_len, tgt_len = cmat.shape
aset = gen_aset(pset, src_len, tgt_len)
final_list = align_texts(aset, list2, list1) # note the order
# df_aligned
df_aligned = pd.DataFrame(final_list, columns=["text1", "text2", "likelihood"])
# swap text1 text2
df_aligned = df_aligned[["text2", "text1", "likelihood"]]
df_aligned.columns = ["text1", "text2", "likelihood"]
ic("paras aligned: ", df_aligned.head(10))
# round the last column to 2
# df_aligned.likelihood = df_aligned.likelihood.round(2)
# df_aligned = df_aligned.round({"likelihood": 2})
# df_aligned.likelihood = df_aligned.likelihood.apply(lambda x: np.nan if x in [""] else x)
if len(df_aligned) > 200:
df_html = None
else: # show a one-bathc table in html
# style
styled = df_aligned.style.set_properties(
**{
"font-size": "10pt",
"border-color": "black",
"border": "1px black solid !important"
}
# border-color="black",
).set_table_styles([{
"selector": "", # noqs
"props": [("border", "2px black solid !important")]}] # noqs
).format(
precision=2
)
# .bar(subset="likelihood", color="#5fba7d")
# .background_gradient("Greys")
# df_html = df_aligned.to_html()
df_html = styled.to_html()
# ===
if plot_dia:
output_plot = "img/plt.png"
else:
output_plot = None
_ = df_aligned.to_csv(index=False)
file_dl.write_text(_, encoding="utf8")
# file_dl.write_text(_, encoding="gb2312") # no go
df_aligned.to_excel(file_dl_xlsx)
# return df_trimmed, plt
# return df_trimmed, plt, file_dl, file_dl_xlsx, df_aligned
# output_plot: gr.outputs.Image(type="auto", label="...")
# return df_trimmed, output_plot, file_dl, file_dl_xlsx, df_aligned
# return df_trimmed, output_plot, file_dl, file_dl_xlsx, styled, df_html # gradio cant handle style
ic("sent-ali-algo: ", sent_ali_algo)
# ### sent-ali-algo is None: para align
if sent_ali_algo in ["None"]:
ic("returning para-ali outputs")
return df_trimmed, output_plot, file_dl, file_dl_xlsx, None, None, df_aligned, df_html
# ### proceed with sent align
if sent_ali_algo in ["fast"]:
ic(sent_ali_algo)
align_func = align_sents
ic(df_aligned.shape, df_aligned.columns)
aligned_sents = paras2sents(df_aligned, align_func)
# ic(pd.DataFrame(aligned_sents).shape, aligned_sents)
ic(pd.DataFrame(aligned_sents).shape)
df_aligned_sents = pd.DataFrame(aligned_sents, columns=["text1", "text2"])
else: # ["slow"]
ic(sent_ali_algo)
align_func = shuffle_sents
aligned_sents = paras2sents(df_aligned, align_func, lang1, lang2)
# add extra entry if necessary
aligned_sents = [list(sent) + [""] if len(sent) == 2 else list(sent) for sent in aligned_sents]
df_aligned_sents = pd.DataFrame(aligned_sents, columns=["text1", "text2", "likelihood"])
# prepare sents downloads
file_dl_sents = Path(f"{file_dl.stem}-sents{file_dl.suffix}")
file_dl_xlsx_sents = Path(f"{file_dl_xlsx.stem}-sents{file_dl_xlsx.suffix}")
_ = df_aligned_sents.to_csv(index=False)
file_dl_sents.write_text(_, encoding="utf8")
df_aligned_sents.to_excel(file_dl_xlsx_sents)
# prepare html output
if len(df_aligned_sents) > 200:
df_html = None
else: # show a one-bathc table in html
# style
styled = df_aligned_sents.style.set_properties(
**{
"font-size": "10pt",
"border-color": "black",
"border": "1px black solid !important"
}
# border-color="black",
).set_table_styles([{
"selector": "", # noqs
"props": [("border", "2px black solid !important")]}] # noqs
).format(
precision=2
)
df_html = styled.to_html()
# aligned sents outputs
ic("aligned sents outputs")
# return df_trimmed, output_plot, file_dl, file_dl_xlsx, None, None, df_aligned, df_html
return df_trimmed, output_plot, file_dl, file_dl_xlsx, file_dl_sents, file_dl_xlsx_sents, df_aligned_sents, df_html
|