Spaces:
Runtime error
Runtime error
File size: 11,660 Bytes
b4008c3 8afcc54 b4008c3 8afcc54 b4008c3 8afcc54 acde6c9 b4008c3 8afcc54 b4008c3 8afcc54 b4008c3 8afcc54 df81c3a b4008c3 8afcc54 b4008c3 5a1e312 b4008c3 acde6c9 b4008c3 acde6c9 b4008c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
"""Refer to https://github.com/abacaj/mpt-30B-inference/blob/main/download_model.py."""
# pylint: disable=invalid-name, missing-function-docstring, missing-class-docstring, redefined-outer-name, broad-except
import os
import time
from dataclasses import asdict, dataclass
import gradio as gr
from ctransformers import AutoConfig, AutoModelForCausalLM
# from mcli import predict
from huggingface_hub import hf_hub_download
from loguru import logger
URL = os.environ.get("URL")
_ = """
if URL is None:
raise ValueError("URL environment variable must be set")
if os.environ.get("MOSAICML_API_KEY") is None:
raise ValueError("git environment variable must be set")
# """
def predict0(prompt, bot, timeout):
logger.debug(f"{prompt=}, {bot=}, {timeout=}")
try:
user_prompt = prompt
generator = generate(llm, generation_config, system_prompt, user_prompt.strip())
print(assistant_prefix, end=" ", flush=True)
for word in generator:
print(word, end="", flush=True)
print("")
response = word
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
bot = {"inputs": [response]}
return prompt, bot
def download_mpt_quant(destination_folder: str, repo_id: str, model_filename: str):
local_path = os.path.abspath(destination_folder)
return hf_hub_download(
repo_id=repo_id,
filename=model_filename,
local_dir=local_path,
local_dir_use_symlinks=True,
)
@dataclass
class GenerationConfig:
temperature: float
top_k: int
top_p: float
repetition_penalty: float
max_new_tokens: int
seed: int
reset: bool
stream: bool
threads: int
stop: list[str]
def format_prompt(system_prompt: str, user_prompt: str):
"""format prompt based on: https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py"""
system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
user_prompt = f"<|im_start|>user\n{user_prompt}<|im_end|>\n"
assistant_prompt = f"<|im_start|>assistant\n"
return f"{system_prompt}{user_prompt}{assistant_prompt}"
def generate(
llm: AutoModelForCausalLM,
generation_config: GenerationConfig,
system_prompt: str,
user_prompt: str,
):
"""run model inference, will return a Generator if streaming is true"""
return llm(
format_prompt(
system_prompt,
user_prompt,
),
**asdict(generation_config),
)
class Chat:
default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers."
system_format = "<|im_start|>system\n{}<|im_end|>\n"
def __init__(
self, system: str = None, user: str = None, assistant: str = None
) -> None:
if system is not None:
self.set_system_prompt(system)
else:
self.reset_system_prompt()
self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n"
self.assistant = (
assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n"
)
self.response_prefix = self.assistant.split("{}", maxsplit=1)[0]
def set_system_prompt(self, system_prompt):
# self.system = self.system_format.format(system_prompt)
return system_prompt
def reset_system_prompt(self):
return self.set_system_prompt(self.default_system_prompt)
def history_as_formatted_str(self, system, history) -> str:
system = self.system_format.format(system)
text = system + "".join(
[
"\n".join(
[
self.user.format(item[0]),
self.assistant.format(item[1]),
]
)
for item in history[:-1]
]
)
text += self.user.format(history[-1][0])
text += self.response_prefix
# stopgap solution to too long sequences
if len(text) > 4500:
# delete from the middle between <|im_start|> and <|im_end|>
# find the middle ones, then expand out
start = text.find("<|im_start|>", 139)
end = text.find("<|im_end|>", 139)
while end < len(text) and len(text) > 4500:
end = text.find("<|im_end|>", end + 1)
text = text[:start] + text[end + 1 :]
if len(text) > 4500:
# the nice way didn't work, just truncate
# deleting the beginning
text = text[-4500:]
return text
def clear_history(self, history):
return []
def turn(self, user_input: str):
self.user_turn(user_input)
return self.bot_turn()
def user_turn(self, user_input: str, history):
history.append([user_input, ""])
return user_input, history
def bot_turn(self, system, history):
conversation = self.history_as_formatted_str(system, history)
assistant_response = call_inf_server(conversation)
history[-1][-1] = assistant_response
print(system)
print(history)
return "", history
def call_inf_server(prompt):
try:
response = predict(
URL,
{"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512},
timeout=70,
)
# print(f'prompt: {prompt}')
# print(f'len(prompt): {len(prompt)}')
response = response["outputs"][0]
# print(f'len(response): {len(response)}')
# remove spl tokens from prompt
spl_tokens = ["<|im_start|>", "<|im_end|>"]
clean_prompt = prompt.replace(spl_tokens[0], "").replace(spl_tokens[1], "")
# return response[len(clean_prompt) :] # remove the prompt
try:
user_prompt = prompt
generator = generate(llm, generation_config, system_prompt, user_prompt.strip())
print(assistant_prefix, end=" ", flush=True)
for word in generator:
print(word, end="", flush=True)
print("")
response = word
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
return response
except Exception as e:
# assume it is our error
# just wait and try one more time
print(e)
time.sleep(1)
response = predict(
URL,
{"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512},
timeout=70,
)
# print(response)
response = response["outputs"][0]
return response[len(prompt) :] # remove the prompt
logger.info("start dl")
_ = """full url: https://huggingface.co/TheBloke/mpt-30B-chat-GGML/blob/main/mpt-30b-chat.ggmlv0.q4_1.bin"""
repo_id = "TheBloke/mpt-30B-chat-GGML"
model_filename = "mpt-30b-chat.ggmlv0.q4_1.bin"
destination_folder = "models"
download_mpt_quant(destination_folder, repo_id, model_filename)
logger.info("done dl")
config = AutoConfig.from_pretrained("mosaicml/mpt-30b-chat", context_length=8192)
llm = AutoModelForCausalLM.from_pretrained(
os.path.abspath("models/mpt-30b-chat.ggmlv0.q4_1.bin"),
model_type="mpt",
config=config,
)
system_prompt = "A conversation between a user and an LLM-based AI assistant named Local Assistant. Local Assistant gives helpful and honest answers."
generation_config = GenerationConfig(
temperature=0.2,
top_k=0,
top_p=0.9,
repetition_penalty=1.0,
max_new_tokens=512, # adjust as needed
seed=42,
reset=False, # reset history (cache)
stream=True, # streaming per word/token
threads=int(os.cpu_count() / 2), # adjust for your CPU
stop=["<|im_end|>", "|<"],
)
user_prefix = "[user]: "
assistant_prefix = "[assistant]:"
with gr.Blocks(
theme=gr.themes.Soft(),
css=".disclaimer {font-variant-caps: all-small-caps;}",
) as demo:
gr.Markdown(
"""<h1><center>MosaicML MPT-30B-Chat</center></h1>
This demo is of [MPT-30B-Chat](https://huggingface.co/mosaicml/mpt-30b-ch a t). It is based on [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) fine-tuned on approximately 300,000 turns of high-quality conversations, and is powered by [MosaicML Inference](https://www.mosaicml.com/inference).
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs, [sign up](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-30b) for MosaicML platform.
"""
)
conversation = Chat()
chatbot = gr.Chatbot().style(height=500)
with gr.Row():
with gr.Column():
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Chat Message Box",
show_label=False,
).style(container=False)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit")
stop = gr.Button("Stop")
clear = gr.Button("Clear")
with gr.Row():
with gr.Accordion("Advanced Options:", open=False):
with gr.Row():
with gr.Column(scale=2):
system = gr.Textbox(
label="System Prompt",
value=Chat.default_system_prompt,
show_label=False,
).style(container=False)
with gr.Column():
with gr.Row():
change = gr.Button("Change System Prompt")
reset = gr.Button("Reset System Prompt")
with gr.Row():
gr.Markdown(
"Disclaimer: MPT-30B can produce factually incorrect output, and should not be relied on to produce "
"factually accurate information. MPT-30B was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
with gr.Row():
gr.Markdown(
"[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)",
elem_classes=["disclaimer"],
)
_ = """
submit_event = msg.submit(
fn=conversation.user_turn,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
fn=conversation.bot_turn,
inputs=[system, chatbot],
outputs=[msg, chatbot],
queue=True,
)
submit_click_event = submit.click(
fn=conversation.user_turn,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
# fn=conversation.bot_turn,
inputs=[system, chatbot],
outputs=[msg, chatbot],
queue=True,
)
# """
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False).then(
fn=conversation.clear_history,
inputs=[chatbot],
outputs=[chatbot],
queue=False,
)
change.click(
fn=conversation.set_system_prompt,
inputs=[system],
outputs=[system],
queue=False,
)
reset.click(
fn=conversation.reset_system_prompt,
inputs=[],
outputs=[system],
queue=False,
)
demo.queue(max_size=36, concurrency_count=14).launch(debug=True)
|