Spaces:
Runtime error
Runtime error
File size: 5,254 Bytes
9b6a4ab 8d030a2 9c042fd 4947e7b 9c042fd 89cb869 8d030a2 de222eb 8d030a2 9b6a4ab 360d9e4 8d030a2 89cb869 8d030a2 89cb869 d7ec399 89cb869 634ed9b 7eb763b 634ed9b 89cb869 d7ec399 89cb869 60399ca 360d9e4 9c042fd 634ed9b 360d9e4 9c042fd da75503 9c042fd adb2ab9 9c042fd 360d9e4 53c5ff4 634ed9b 53c5ff4 634ed9b 360d9e4 adb2ab9 53c5ff4 634ed9b adb2ab9 d82d66e 634ed9b d82d66e adb2ab9 7eb763b adb2ab9 53c5ff4 634ed9b 53c5ff4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
"""Test various models."""
# pylint: disable=invalid-name, line-too-long,broad-exception-caught, protected-access
import os
import time
from pathlib import Path
import gradio as gr
import torch
from loguru import logger
from transformers import AutoModel, AutoTokenizer
# ruff: noqa: E402
# os.system("pip install --upgrade torch transformers sentencepiece scipy cpm_kernels accelerate bitsandbytes loguru")
# os.system("pip install torch transformers sentencepiece loguru")
# fix timezone in Linux
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
model_name = "THUDM/chatglm2-6b-int4" # 3.9G
tokenizer = AutoTokenizer.from_pretrained(
"THUDM/chatglm2-6b-int4", trust_remote_code=True
)
has_cuda = torch.cuda.is_available()
# has_cuda = False # force cpu
logger.debug("load")
if has_cuda:
if model_name.endswith("int4"):
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
else:
model = (
AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda().half()
)
else:
model = (
AutoModel.from_pretrained(model_name, trust_remote_code=True).float()
) # .float() .half().float(): must use float for cpu
model = model.eval()
logger.debug("done load")
# tokenizer = AutoTokenizer.from_pretrained("openchat/openchat_v2_w")
# model = AutoModelForCausalLM.from_pretrained("openchat/openchat_v2_w", load_in_8bit_fp32_cpu_offload=True, load_in_8bit=True)
# locate model file cache
cache_loc = Path("~/.cache/huggingface/hub").expanduser()
model_cache_path = [
elm
for elm in Path(cache_loc).rglob("*")
if Path(model_name).name in elm.as_posix() and "pytorch_model.bin" in elm.as_posix()
]
logger.debug(f"{model_cache_path=}")
if model_cache_path:
model_size_gb = model_cache_path[0].stat().st_size / 2**30
logger.info(f"{model_name=} {model_size_gb=:.2f} GB")
def respond(message, chat_history):
"""Gen a response."""
message = message.strip()
response, chat_history = model.chat(
tokenizer,
message,
history=chat_history,
temperature=0.7,
repetition_penalty=1.2,
max_length=128,
)
chat_history.append((message, response))
return message, chat_history
theme = gr.themes.Soft(text_size="sm")
with gr.Blocks(theme=theme) as block:
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=12):
msg = gr.Textbox()
with gr.Column(scale=1, min_width=16):
btn = gr.Button("Send")
with gr.Column(scale=1, min_width=8):
clear = gr.ClearButton([msg, chatbot])
# do not clear prompt
btn.submit(respond, [msg, chatbot], [msg, chatbot])
msg.click(lambda x, y: ("",) + respond(x, y)[1:], [msg, chatbot], [msg, chatbot])
with gr.Accordion("Example inputs", open=True):
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = gr.Examples(
examples=[
["Explain the plot of Cinderella in a sentence."],
[
"How long does it take to become proficient in French, and what are the best methods for retaining information?"
],
["What are some common mistakes to avoid when writing code?"],
["Build a prompt to generate a beautiful portrait of a horse"],
["Suggest four metaphors to describe the benefits of AI"],
["Write a pop song about leaving home for the sandy beaches."],
["Write a summary demonstrating my ability to tame lions"],
["鲁迅和周树人什么关系"],
["从前有一头牛,这头牛后面有什么?"],
["正无穷大加一大于正无穷大吗?"],
["正无穷大加正无穷大大于正无穷大吗?"],
["-2的平方根等于什么"],
["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
["鲁迅和周树人什么关系 用英文回答"],
["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
[f"{etext} 翻成中文,列出3个版本"],
[f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"],
["js 判断一个数是不是质数"],
["js 实现python 的 range(10)"],
["js 实现python 的 [*(range(10)]"],
["假定 1 + 2 = 4, 试求 7 + 8"],
["Erkläre die Handlung von Cinderella in einem Satz."],
["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"],
],
inputs=[msg],
examples_per_page=60,
)
block.queue().launch()
|