Spaces:
Runtime error
Runtime error
File size: 14,591 Bytes
0238de3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
"""Run codes"""
# pylint: disable=line-too-long, broad-exception-caught, invalid-name, missing-function-docstring, too-many-instance-attributes, missing-class-docstring
# import gradio
# gradio.load("models/WizardLM/WizardCoder-15B-V1.0").launch()
import os
from pathlib import Path
import time
from dataclasses import asdict, dataclass
from types import SimpleNamespace
import gradio as gr
from about_time import about_time
# from ctransformers import AutoConfig, AutoModelForCausalLM
from ctransformers import AutoModelForCausalLM
from huggingface_hub import hf_hub_download
from loguru import logger
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
ns = SimpleNamespace(
response="",
generator=[],
)
default_system_prompt = "A conversation between a user and an LLM-based AI assistant named Local Assistant. Local Assistant gives helpful and honest answers."
user_prefix = "[user]: "
assistant_prefix = "[assistant]: "
def predict(prompt, bot):
# logger.debug(f"{prompt=}, {bot=}, {timeout=}")
logger.debug(f"{prompt=}, {bot=}")
ns.response = ""
with about_time() as atime: # type: ignore
try:
# user_prompt = prompt
generator = generate(
LLM,
GENERATION_CONFIG,
system_prompt=default_system_prompt,
user_prompt=prompt.strip(),
)
ns.generator = generator # for .then
print(assistant_prefix, end=" ", flush=True)
response = ""
buff.update(value="diggin...")
for word in generator:
# print(word, end="", flush=True)
print(word, flush=True) # vertical stream
response += word
ns.response = response
buff.update(value=response)
print("")
logger.debug(f"{response=}")
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
# bot = {"inputs": [response]}
_ = (
f"(time elapsed: {atime.duration_human}, " # type: ignore
f"{atime.duration/(len(prompt) + len(response)):.1f}s/char)" # type: ignore
)
bot.append([prompt, f"{response} {_}"])
return prompt, bot
def predict_api(prompt):
logger.debug(f"{prompt=}")
ns.response = ""
try:
# user_prompt = prompt
_ = GenerationConfig(
temperature=0.2,
top_k=0,
top_p=0.9,
repetition_penalty=1.0,
max_new_tokens=512, # adjust as needed
seed=42,
reset=False, # reset history (cache)
stream=True, # TODO stream=False and generator
threads=os.cpu_count() // 2, # type: ignore # adjust for your CPU
stop=["<|im_end|>", "|<"],
)
# TODO stream does not make sense in api?
generator = generate(
LLM, _, system_prompt=default_system_prompt, user_prompt=prompt.strip()
)
print(assistant_prefix, end=" ", flush=True)
response = ""
buff.update(value="diggin...")
for word in generator:
print(word, end="", flush=True)
response += word
ns.response = response
buff.update(value=response)
print("")
logger.debug(f"{response=}")
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
# bot = {"inputs": [response]}
# bot = [(prompt, response)]
return response
def download_quant(destination_folder: str, repo_id: str, model_filename: str):
local_path = os.path.abspath(destination_folder)
return hf_hub_download(
repo_id=repo_id,
filename=model_filename,
local_dir=local_path,
local_dir_use_symlinks=True,
)
@dataclass
class GenerationConfig:
temperature: float
top_k: int
top_p: float
repetition_penalty: float
max_new_tokens: int
seed: int
reset: bool
stream: bool
threads: int
stop: list[str]
def format_prompt(system_prompt: str, user_prompt: str):
"""Format prompt based on: https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py."""
# TODO im_start/im_end possible fix for WizardCoder
system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
user_prompt = f"<|im_start|>user\n{user_prompt}<|im_end|>\n"
assistant_prompt = "<|im_start|>assistant\n"
return f"{system_prompt}{user_prompt}{assistant_prompt}"
def generate(
llm: AutoModelForCausalLM,
generation_config: GenerationConfig,
system_prompt: str = default_system_prompt,
user_prompt: str = "",
):
"""Run model inference, will return a Generator if streaming is true"""
# if not user_prompt.strip():
return llm(
format_prompt(
system_prompt,
user_prompt,
),
**asdict(generation_config),
)
logger.info("start dl")
_ = """full url: https://huggingface.co/TheBloke/mpt-30B-chat-GGML/blob/main/mpt-30b-chat.ggmlv0.q4_1.bin"""
# https://huggingface.co/TheBloke/mpt-30B-chat-GGML
_ = """
mpt-30b-chat.ggmlv0.q4_0.bin q4_0 4 16.85 GB 19.35 GB 4-bit.
mpt-30b-chat.ggmlv0.q4_1.bin q4_1 4 18.73 GB 21.23 GB 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
mpt-30b-chat.ggmlv0.q5_0.bin q5_0 5 20.60 GB 23.10 GB
mpt-30b-chat.ggmlv0.q5_1.bin q5_1 5 22.47 GB 24.97 GB
mpt-30b-chat.ggmlv0.q8_0.bin q8_0 8 31.83 GB 34.33 GB
"""
MODEL_FILENAME = "mpt-30b-chat.ggmlv0.q4_1.bin"
MODEL_FILENAME = "WizardCoder-15B-1.0.ggmlv3.q4_0.bin" # 10.7G
MODEL_FILENAME = "WizardCoder-15B-1.0.ggmlv3.q4_1.bin" # 11.9G
DESTINATION_FOLDER = "models"
REPO_ID = "TheBloke/mpt-30B-chat-GGML"
if "WizardCoder" in MODEL_FILENAME:
REPO_ID = "TheBloke/WizardCoder-15B-1.0-GGML"
download_quant(DESTINATION_FOLDER, REPO_ID, MODEL_FILENAME)
logger.info("done dl")
# if "mpt" in model_filename:
# config = AutoConfig.from_pretrained("mosaicml/mpt-30b-cha t", context_length=8192)
# llm = AutoModelForCausalLM.from_pretrained(
# os.path.abspath(f"models/{model_filename}"),
# model_type="mpt",
# config=config,
# )
# https://huggingface.co/spaces/matthoffner/wizardcoder-ggml/blob/main/main.py
_ = """
llm = AutoModelForCausalLM.from_pretrained(
"TheBloke/WizardCoder-15B-1.0-GGML",
model_file="",
model_type="starcoder",
threads=8
)
# """
logger.debug(f"{os.cpu_count()=}")
if "WizardCoder" in MODEL_FILENAME:
_ = Path("models", MODEL_FILENAME).absolute().as_posix()
LLM = AutoModelForCausalLM.from_pretrained(
"TheBloke/WizardCoder-15B-1.0-GGML",
model_file=_,
model_type="starcoder",
threads=os.cpu_count() // 2, # type: ignore
)
# LLM = AutoModelForCausalLM.from_pretrained(
# "TheBloke/WizardCoder-15B-1.0-GGML",
# model_file=MODEL_FILENAME,
# model_type="starcoder",
# threads=os.cpu_count() // 2 # type: ignore
# )
cpu_count = os.cpu_count() // 2 # type: ignore
logger.debug(f"{cpu_count=}")
GENERATION_CONFIG = GenerationConfig(
temperature=0.2,
top_k=0,
top_p=0.9,
repetition_penalty=1.0,
max_new_tokens=512, # adjust as needed
seed=42,
reset=False, # reset history (cache)
stream=True, # streaming per word/token
threads=cpu_count,
stop=["<|im_end|>", "|<"], # TODO possible fix of stop
)
css = """
.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}
.disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;}
.xsmall {font-size: x-small;}
"""
with gr.Blocks(
# title="mpt-30b-chat-ggml",
title=f"{MODEL_FILENAME}",
theme=gr.themes.Soft(text_size="sm", spacing_size="sm"),
css=css,
) as block:
with gr.Accordion("🎈 Info", open=False):
# gr.HTML(
# """<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>"""
# )
gr.Markdown(
f"""<h4><center>{MODEL_FILENAME}</center></h4>
Most examples are meant for another model. You probably should try
some coder-related prompts.
Try to refresh the browser and try again when occasionally errors occur.
It takes about >100 seconds to get a response. Restarting the space takes about 2 minutes if the space is asleep due to inactivity. If the space crashes for some reason, it will also take about 2 minutes to restart. You need to refresh the browser to reload the new space.
""",
elem_classes="xsmall",
)
# chatbot = gr.Chatbot().style(height=700) # 500
chatbot = gr.Chatbot(height=700) # 500
buff = gr.Textbox(show_label=False, visible=False)
with gr.Row():
with gr.Column(scale=4):
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Ask me anything (press Enter or click Submit to send)",
show_label=False,
).style(container=False)
with gr.Column(scale=1, min_width=100):
with gr.Row():
submit = gr.Button("Submit", elem_classes="xsmall")
stop = gr.Button("Stop", visible=False)
clear = gr.Button("Clear History", visible=True)
with gr.Row(visible=False):
with gr.Accordion("Advanced Options:", open=False):
with gr.Row():
with gr.Column(scale=2):
system = gr.Textbox(
label="System Prompt",
value=default_system_prompt,
show_label=False,
).style(container=False)
with gr.Column():
with gr.Row():
change = gr.Button("Change System Prompt")
reset = gr.Button("Reset System Prompt")
with gr.Accordion("Example Inputs", open=True):
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = gr.Examples(
examples=[
["判断一个数是不是质数的 javascript 码"],
["实现python 里 range(10)的 javascript 码"],
["实现python 里 [*(range(10)]的 javascript 码"],
["Explain the plot of Cinderella in a sentence."],
[
"How long does it take to become proficient in French, and what are the best methods for retaining information?"
],
["What are some common mistakes to avoid when writing code?"],
["Build a prompt to generate a beautiful portrait of a horse"],
["Suggest four metaphors to describe the benefits of AI"],
["Write a pop song about leaving home for the sandy beaches."],
["Write a summary demonstrating my ability to tame lions"],
["鲁迅和周树人什么关系 说中文"],
["鲁迅和周树人什么关系"],
["鲁迅和周树人什么关系 用英文回答"],
["从前有一头牛,这头牛后面有什么?"],
["正无穷大加一大于正无穷大吗?"],
["正无穷大加正无穷大大于正无穷大吗?"],
["-2的平方根等于什么"],
["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
[f"{etext} 翻成中文,列出3个版本"],
[f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"],
["假定 1 + 2 = 4, 试求 7 + 8"],
["Erkläre die Handlung von Cinderella in einem Satz."],
["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"],
],
inputs=[msg],
examples_per_page=40,
)
# with gr.Row():
with gr.Accordion("Disclaimer", open=False):
_ = "-".join(MODEL_FILENAME.split("-")[:2])
gr.Markdown(
f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
"factually accurate information. {_} was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
msg.submit(
# fn=conversation.user_turn,
fn=predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
# queue=True,
show_progress="full",
api_name="predict",
)
submit.click(
fn=lambda x, y: ("",) + predict(x, y)[1:], # clear msg
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
)
clear.click(lambda: None, None, chatbot, queue=False)
# update buff Textbox, every: units in seconds)
# https://huggingface.co/spaces/julien-c/nvidia-smi/discussions
# does not work
# AttributeError: 'Blocks' object has no attribute 'run_forever'
# block.run_forever(lambda: ns.response, None, [buff], every=1)
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
input_text = gr.Text()
api_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
api_btn.click(
predict_api,
input_text,
out_text,
# show_progress="full",
api_name="api",
)
# concurrency_count=5, max_size=20
# max_size=36, concurrency_count=14
block.queue(concurrency_count=5, max_size=20).launch(debug=True)
|