Spaces:
Sleeping
Sleeping
File size: 14,698 Bytes
77bf716 2b74b13 77bf716 2b74b13 77bf716 2b74b13 77bf716 2b74b13 77bf716 2b74b13 77bf716 2b74b13 77bf716 2b74b13 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 2b74b13 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 682de52 77bf716 2b74b13 77bf716 682de52 77bf716 682de52 77bf716 2b74b13 77bf716 682de52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import pandas as pd
import os
import threading
import time
import re
app = Flask(__name__)
CORS(app)
UPLOAD_FOLDER = "/tmp"
SESSION_KEY_PREFIX = "data_tool_session_id"
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 512 * 1024 * 1024 # 512 MB
# === Cleanup Thread: delete files older than 60 minutes ===
def clean_old_files(folder=UPLOAD_FOLDER, max_age=60):
def cleanup_loop():
while True:
now = time.time()
for f in os.listdir(folder):
path = os.path.join(folder, f)
if os.path.isfile(path):
if now - os.path.getmtime(path) > max_age * 60:
try:
os.remove(path)
print(f"[Cleanup] Deleted: {path}")
except Exception as e:
print(f"[Cleanup Error] {e}")
time.sleep(600) # Every 10 minutes
threading.Thread(target=cleanup_loop, daemon=True).start()
# Start cleanup thread
clean_old_files()
# === Instruction Parser ===
def apply_instruction(df, instruction):
instruction = instruction.lower()
try:
match = re.search(r"drop column (\w+)", instruction)
if match:
df = df.drop(columns=[match.group(1)])
if "remove duplicates" in instruction:
df = df.drop_duplicates()
if "drop missing" in instruction or "remove null" in instruction:
df = df.dropna()
match = re.search(r"fill missing.*with ([\w\.]+)", instruction)
if match:
val = match.group(1)
try: val = float(val)
except: pass
df = df.fillna(val)
match = re.search(r"sort by (\w+)( descending| desc)?", instruction)
if match:
col = match.group(1)
ascending = not bool(match.group(2))
df = df.sort_values(by=col, ascending=ascending)
match = re.search(r"rename column (\w+) to (\w+)", instruction)
if match:
df = df.rename(columns={match.group(1): match.group(2)})
match = re.search(r"filter where (\w+) > (\d+)", instruction)
if match:
df = df[df[match.group(1)] > float(match.group(2))]
match = re.search(r"group by (\w+) and sum (\w+)", instruction)
if match:
df = df.groupby(match.group(1))[match.group(2)].sum().reset_index()
match = re.search(r"add column (\w+) as (\w+) \+ (\w+)", instruction)
if match:
df[match.group(1)] = df[match.group(2)] + df[match.group(3)]
match = re.search(r"normalize column (\w+)", instruction)
if match:
col = match.group(1)
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import pandas as pd
import os
import threading
import time
import re
app = Flask(__name__)
CORS(app)
UPLOAD_FOLDER = "/tmp"
SESSION_KEY_PREFIX = "data_tool_session_id"
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 512 * 1024 * 1024 # 512 MB
# === Root Route (Required for Hugging Face) ===
@app.route("/", methods=["GET"])
def root():
return jsonify({
"message": "Data Processing API is running",
"status": "healthy",
"endpoints": {
"POST /process": "Upload and process CSV/Excel files",
"GET /download/<filename>": "Download processed file with session_id parameter",
"GET /health": "Health check"
},
"version": "1.0"
})
# === Health Check Route ===
@app.route("/health", methods=["GET"])
def health_check():
return jsonify({"status": "healthy", "timestamp": time.time()})
# === Cleanup Thread: delete files older than 60 minutes ===
def clean_old_files(folder=UPLOAD_FOLDER, max_age=60):
def cleanup_loop():
while True:
now = time.time()
try:
if os.path.exists(folder):
for f in os.listdir(folder):
path = os.path.join(folder, f)
if os.path.isfile(path):
if now - os.path.getmtime(path) > max_age * 60:
try:
os.remove(path)
print(f"[Cleanup] Deleted: {path}")
except Exception as e:
print(f"[Cleanup Error] {e}")
except Exception as e:
print(f"[Cleanup Error] {e}")
time.sleep(600) # Every 10 minutes
threading.Thread(target=cleanup_loop, daemon=True).start()
# Start cleanup thread
clean_old_files()
# === Instruction Parser ===
def apply_instruction(df, instruction):
instruction = instruction.lower().strip()
if not instruction:
return df, "No instruction provided"
try:
# Drop column
match = re.search(r"drop column (\w+)", instruction)
if match:
col_name = match.group(1)
if col_name in df.columns:
df = df.drop(columns=[col_name])
return df, f"Dropped column '{col_name}'"
else:
return df, f"Error: Column '{col_name}' not found"
# Remove duplicates
if "remove duplicates" in instruction:
original_count = len(df)
df = df.drop_duplicates()
removed_count = original_count - len(df)
return df, f"Removed {removed_count} duplicate rows"
# Drop missing values
if "drop missing" in instruction or "remove null" in instruction:
original_count = len(df)
df = df.dropna()
removed_count = original_count - len(df)
return df, f"Removed {removed_count} rows with missing values"
# Fill missing values
match = re.search(r"fill missing.*with ([\w\.]+)", instruction)
if match:
val = match.group(1)
try:
val = float(val)
except:
pass
missing_count = df.isnull().sum().sum()
df = df.fillna(val)
return df, f"Filled {missing_count} missing values with '{val}'"
# Sort by column
match = re.search(r"sort by (\w+)( descending| desc)?", instruction)
if match:
col = match.group(1)
if col not in df.columns:
return df, f"Error: Column '{col}' not found"
ascending = not bool(match.group(2))
df = df.sort_values(by=col, ascending=ascending)
order = "descending" if not ascending else "ascending"
return df, f"Sorted by '{col}' in {order} order"
# Rename column
match = re.search(r"rename column (\w+) to (\w+)", instruction)
if match:
old_name, new_name = match.group(1), match.group(2)
if old_name not in df.columns:
return df, f"Error: Column '{old_name}' not found"
df = df.rename(columns={old_name: new_name})
return df, f"Renamed column '{old_name}' to '{new_name}'"
# Filter rows
match = re.search(r"filter where (\w+) > (\d+)", instruction)
if match:
col, val = match.group(1), float(match.group(2))
if col not in df.columns:
return df, f"Error: Column '{col}' not found"
original_count = len(df)
df = df[df[col] > val]
kept_count = len(df)
return df, f"Filtered data: kept {kept_count} rows where {col} > {val}"
# Group by and sum
match = re.search(r"group by (\w+) and sum (\w+)", instruction)
if match:
group_col, sum_col = match.group(1), match.group(2)
if group_col not in df.columns:
return df, f"Error: Column '{group_col}' not found"
if sum_col not in df.columns:
return df, f"Error: Column '{sum_col}' not found"
df = df.groupby(group_col)[sum_col].sum().reset_index()
return df, f"Grouped by '{group_col}' and summed '{sum_col}'"
# Add column (sum of two columns)
match = re.search(r"add column (\w+) as (\w+) \+ (\w+)", instruction)
if match:
new_col, col1, col2 = match.group(1), match.group(2), match.group(3)
if col1 not in df.columns:
return df, f"Error: Column '{col1}' not found"
if col2 not in df.columns:
return df, f"Error: Column '{col2}' not found"
df[new_col] = df[col1] + df[col2]
return df, f"Added column '{new_col}' as sum of '{col1}' and '{col2}'"
# Normalize column
match = re.search(r"normalize column (\w+)", instruction)
if match:
col = match.group(1)
if col not in df.columns:
return df, f"Error: Column '{col}' not found"
if not pd.api.types.is_numeric_dtype(df[col]):
return df, f"Error: Column '{col}' is not numeric"
df[col] = (df[col] - df[col].min()) / (df[col].max() - df[col].min())
return df, f"Normalized column '{col}' using min-max scaling"
# Standardize column
match = re.search(r"standardize column (\w+)", instruction)
if match:
col = match.group(1)
if col not in df.columns:
return df, f"Error: Column '{col}' not found"
if not pd.api.types.is_numeric_dtype(df[col]):
return df, f"Error: Column '{col}' is not numeric"
df[col] = (df[col] - df[col].mean()) / df[col].std()
return df, f"Standardized column '{col}' using z-score"
# Split column by comma
match = re.search(r"split column (\w+) by comma", instruction)
if match:
col = match.group(1)
if col not in df.columns:
return df, f"Error: Column '{col}' not found"
df[[f"{col}_1", f"{col}_2"]] = df[col].str.split(",", expand=True)
return df, f"Split column '{col}' by comma into '{col}_1' and '{col}_2'"
# Remove special characters
match = re.search(r"remove special characters from (\w+)", instruction)
if match:
col = match.group(1)
if col not in df.columns:
return df, f"Error: Column '{col}' not found"
df[col] = df[col].astype(str).str.replace(r"[^a-zA-Z0-9]", "", regex=True)
return df, f"Removed special characters from column '{col}'"
# If no instruction matched
return df, f"Instruction '{instruction}' not recognized"
except Exception as e:
return df, f"Error: {str(e)}"
# === File Processor Endpoint ===
@app.route("/process", methods=["POST"])
def process_file():
try:
# Validate request
if "file" not in request.files:
return jsonify({"error": "No file provided"}), 400
if "instruction" not in request.form:
return jsonify({"error": "No instruction provided"}), 400
if "session_id" not in request.form:
return jsonify({"error": "No session_id provided"}), 400
file = request.files["file"]
instruction = request.form["instruction"]
session_id = request.form["session_id"]
if file.filename == '':
return jsonify({"error": "No file selected"}), 400
# Read file
try:
if file.filename.lower().endswith('.csv'):
df = pd.read_csv(file)
elif file.filename.lower().endswith(('.xlsx', '.xls')):
df = pd.read_excel(file)
else:
return jsonify({"error": "Unsupported file format. Use CSV or Excel files."}), 400
except Exception as e:
return jsonify({"error": f"File reading error: {str(e)}"}), 400
# Apply instruction
df_processed, status = apply_instruction(df, instruction)
# Save processed file
original_name = file.filename.rsplit('.', 1)[0] # Remove extension
filename = f"processed_{session_id}_{original_name}.csv"
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
try:
df_processed.to_csv(filepath, index=False)
except Exception as e:
return jsonify({"error": f"File saving error: {str(e)}"}), 500
# Generate preview (first 5 rows)
preview = df_processed.head(5).to_dict(orient="records")
return jsonify({
"success": True,
"message": status,
"preview": preview,
"download_url": f"/download/{filename}",
"original_rows": len(df),
"processed_rows": len(df_processed),
"columns": list(df_processed.columns),
"filename": filename
})
except Exception as e:
return jsonify({"error": f"Processing error: {str(e)}"}), 500
# === File Download with Session ID Verification ===
@app.route("/download/<filename>", methods=["GET"])
def download_file(filename):
try:
session_id = request.args.get("session_id")
# Validate session
if not session_id:
return jsonify({"error": "session_id parameter required"}), 400
if f"_{session_id}_" not in filename:
return jsonify({"error": "Invalid session or unauthorized access"}), 403
# Check file exists
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
if not os.path.exists(filepath):
return jsonify({"error": "File not found or expired"}), 404
return send_file(filepath, as_attachment=True, download_name=filename)
except Exception as e:
return jsonify({"error": f"Download error: {str(e)}"}), 500
# === Error Handlers ===
@app.errorhandler(404)
def not_found(error):
return jsonify({"error": "Endpoint not found"}), 404
@app.errorhandler(413)
def too_large(error):
return jsonify({"error": "File too large (max 512MB)"}), 413
@app.errorhandler(500)
def internal_error(error):
return jsonify({"error": "Internal server error"}), 500
# === Run on Port 7860 for Hugging Face ===
if __name__ == "__main__":
print("π Starting Data Processing API on port 7860...")
print("π API Endpoints:")
print(" POST /process - Process files")
print(" GET /download/<filename> - Download processed files")
print(" GET /health - Health check")
app.run(host="0.0.0.0", port=7860, debug=False) |