File size: 16,200 Bytes
7ba7e21
 
 
 
 
 
 
 
 
 
 
 
 
 
8542caf
 
 
 
 
 
7ba7e21
 
8542caf
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba7e21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
from flask import Flask, request, jsonify
from flask_cors import CORS
import cv2
import numpy as np
from PIL import Image
import io
import base64
import colorsys
from sklearn.cluster import KMeans
import webcolors
import math
from collections import Counter
import json
import re
import traceback
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = Flask(__name__)
CORS(app, origins=["*"])

# Add a simple root route
@app.route('/', methods=['GET'])
def home():
    return jsonify({
        'message': 'AI-Powered Color Palette API',
        'version': '1.0.0',
        'endpoints': {
            'extract_palette': '/extract-palette (POST)',
            'health': '/health (GET)'
        },
        'status': 'running'
    })

class AdvancedColorExtractor:
    def __init__(self):
        # Color psychology and context mappings
        self.color_moods = {
            'red': ['passionate', 'energetic', 'bold', 'exciting'],
            'orange': ['warm', 'creative', 'enthusiastic', 'adventurous'],
            'yellow': ['optimistic', 'cheerful', 'innovative', 'bright'],
            'green': ['natural', 'peaceful', 'growth', 'harmony'],
            'blue': ['trustworthy', 'calm', 'professional', 'serene'],
            'purple': ['luxurious', 'creative', 'mysterious', 'royal'],
            'pink': ['playful', 'romantic', 'gentle', 'nurturing'],
            'brown': ['earthy', 'stable', 'rustic', 'organic'],
            'gray': ['sophisticated', 'neutral', 'balanced', 'modern'],
            'black': ['elegant', 'powerful', 'dramatic', 'sleek'],
            'white': ['clean', 'pure', 'minimal', 'fresh']
        }
        
        self.creative_names = {
            'red': ['Crimson Fire', 'Ruby Passion', 'Scarlet Dream', 'Cherry Burst'],
            'orange': ['Sunset Glow', 'Autumn Spice', 'Coral Reef', 'Amber Light'],
            'yellow': ['Golden Hour', 'Sunflower Joy', 'Lemon Zest', 'Honey Drip'],
            'green': ['Forest Whisper', 'Emerald Isle', 'Sage Wisdom', 'Mint Fresh'],
            'blue': ['Ocean Depth', 'Sky Canvas', 'Midnight Azure', 'Arctic Breeze'],
            'purple': ['Lavender Dreams', 'Royal Velvet', 'Mystic Plum', 'Amethyst Glow'],
            'pink': ['Rose Petal', 'Blush Soft', 'Flamingo Pink', 'Cotton Candy'],
            'brown': ['Cocoa Rich', 'Earth Clay', 'Leather Warm', 'Coffee Bean'],
            'gray': ['Storm Cloud', 'Silver Mist', 'Charcoal Deep', 'Dove Wing'],
            'black': ['Midnight Black', 'Obsidian Dark', 'Shadow Deep', 'Carbon Night'],
            'white': ['Pure Snow', 'Cloud White', 'Pearl Shine', 'Arctic White']
        }

    def extract_colors_kmeans(self, image_data, n_colors=8):
        """Extract colors using improved K-means clustering"""
        # Convert to RGB and reshape
        image_rgb = cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB)
        image_rgb = image_rgb.reshape((-1, 3))
        
        # Remove very dark and very light pixels for better clustering
        brightness = np.mean(image_rgb, axis=1)
        filtered_pixels = image_rgb[(brightness > 20) & (brightness < 235)]
        
        if len(filtered_pixels) < n_colors:
            filtered_pixels = image_rgb
        
        # Apply K-means clustering
        kmeans = KMeans(n_clusters=n_colors, random_state=42, n_init=10)
        kmeans.fit(filtered_pixels)
        colors = kmeans.cluster_centers_.astype(int)
        
        # Sort colors by frequency
        labels = kmeans.labels_
        label_counts = Counter(labels)
        sorted_colors = [colors[i] for i in sorted(label_counts.keys(), 
                        key=lambda x: label_counts[x], reverse=True)]
        
        return sorted_colors

    def rgb_to_hex(self, rgb):
        """Convert RGB to HEX"""
        return "#{:02x}{:02x}{:02x}".format(int(rgb[0]), int(rgb[1]), int(rgb[2]))

    def rgb_to_hsl(self, rgb):
        """Convert RGB to HSL"""
        r, g, b = rgb[0]/255.0, rgb[1]/255.0, rgb[2]/255.0
        h, l, s = colorsys.rgb_to_hls(r, g, b)
        return {
            'h': int(h * 360),
            's': int(s * 100),
            'l': int(l * 100)
        }

    def rgb_to_cmyk(self, rgb):
        """Convert RGB to CMYK"""
        r, g, b = rgb[0]/255.0, rgb[1]/255.0, rgb[2]/255.0
        k = 1 - max(r, g, b)
        if k == 1:
            return {'c': 0, 'm': 0, 'y': 0, 'k': 100}
        
        c = (1 - r - k) / (1 - k)
        m = (1 - g - k) / (1 - k)
        y = (1 - b - k) / (1 - k)
        
        return {
            'c': int(c * 100),
            'm': int(m * 100),
            'y': int(y * 100),
            'k': int(k * 100)
        }

    def get_color_name(self, rgb):
        """Get creative color name based on RGB values"""
        try:
            # Try to get closest web color name
            closest_name = webcolors.rgb_to_name(rgb)
            base_color = self.categorize_color(rgb)
            return self.creative_names.get(base_color, ['Unique Color'])[0]
        except ValueError:
            # Generate creative name based on color category
            base_color = self.categorize_color(rgb)
            names = self.creative_names.get(base_color, ['Mystery Color'])
            # Use brightness and saturation to pick variation
            brightness = sum(rgb) / 3
            if brightness > 200:
                return f"Light {names[0]}"
            elif brightness < 80:
                return f"Deep {names[0]}"
            else:
                return names[0]

    def categorize_color(self, rgb):
        """Categorize RGB color into basic color families"""
        r, g, b = rgb
        
        # Convert to HSV for better color categorization
        hsv = colorsys.rgb_to_hsv(r/255, g/255, b/255)
        h, s, v = hsv[0] * 360, hsv[1] * 100, hsv[2] * 100
        
        # Handle grayscale
        if s < 10:
            if v > 90:
                return 'white'
            elif v < 10:
                return 'black'
            else:
                return 'gray'
        
        # Categorize by hue
        if h < 15 or h >= 345:
            return 'red'
        elif h < 45:
            return 'orange'
        elif h < 75:
            return 'yellow'
        elif h < 165:
            return 'green'
        elif h < 255:
            return 'blue'
        elif h < 285:
            return 'purple'
        elif h < 345:
            return 'pink'
        else:
            return 'red'

    def analyze_palette_mood(self, colors):
        """Analyze overall mood and context of the palette"""
        moods = []
        color_categories = []
        
        for color in colors:
            category = self.categorize_color(color)
            color_categories.append(category)
            moods.extend(self.color_moods.get(category, []))
        
        # Count mood frequencies
        mood_counts = Counter(moods)
        dominant_moods = [mood for mood, count in mood_counts.most_common(3)]
        
        # Suggest use cases based on color combination
        suggestions = self.suggest_use_cases(color_categories, dominant_moods)
        
        return {
            'moods': dominant_moods,
            'suggested_uses': suggestions,
            'color_distribution': dict(Counter(color_categories))
        }

    def suggest_use_cases(self, color_categories, moods):
        """Suggest use cases based on color analysis"""
        suggestions = []
        
        # Nature-heavy palettes
        if color_categories.count('green') >= 2 or color_categories.count('brown') >= 2:
            suggestions.extend(['Outdoor brands', 'Environmental websites', 'Natural products'])
        
        # Blue-heavy palettes
        if color_categories.count('blue') >= 2:
            suggestions.extend(['Corporate websites', 'Healthcare', 'Technology apps'])
        
        # Warm color palettes
        warm_colors = color_categories.count('red') + color_categories.count('orange') + color_categories.count('yellow')
        if warm_colors >= 3:
            suggestions.extend(['Food & dining', 'Creative agencies', 'Entertainment'])
        
        # Mood-based suggestions
        if 'energetic' in moods:
            suggestions.append('Fitness & sports')
        if 'luxurious' in moods:
            suggestions.append('Premium brands')
        if 'calm' in moods:
            suggestions.append('Wellness & spa')
        
        return list(set(suggestions))[:5]  # Return unique suggestions, max 5

    def generate_variations(self, colors):
        """Generate palette variations"""
        variations = {}
        
        # Brighter version
        brighter = []
        for color in colors:
            hsv = colorsys.rgb_to_hsv(color[0]/255, color[1]/255, color[2]/255)
            new_hsv = (hsv[0], min(1.0, hsv[1] * 1.2), min(1.0, hsv[2] * 1.1))
            new_rgb = colorsys.hsv_to_rgb(*new_hsv)
            brighter.append([int(new_rgb[0] * 255), int(new_rgb[1] * 255), int(new_rgb[2] * 255)])
        variations['brighter'] = brighter
        
        # Softer version
        softer = []
        for color in colors:
            hsv = colorsys.rgb_to_hsv(color[0]/255, color[1]/255, color[2]/255)
            new_hsv = (hsv[0], hsv[1] * 0.6, hsv[2] * 0.9 + 0.1)
            new_rgb = colorsys.hsv_to_rgb(*new_hsv)
            softer.append([int(new_rgb[0] * 255), int(new_rgb[1] * 255), int(new_rgb[2] * 255)])
        variations['softer'] = softer
        
        # Monochrome version (based on dominant color)
        if colors:
            dominant_color = colors[0]
            base_hue = colorsys.rgb_to_hsv(dominant_color[0]/255, dominant_color[1]/255, dominant_color[2]/255)[0]
            monochrome = []
            for i in range(8):
                sat = 0.2 + (i * 0.1)
                val = 0.3 + (i * 0.08)
                rgb = colorsys.hsv_to_rgb(base_hue, min(1.0, sat), min(1.0, val))
                monochrome.append([int(rgb[0] * 255), int(rgb[1] * 255), int(rgb[2] * 255)])
            variations['monochrome'] = monochrome
        
        return variations

    def suggest_complementary_colors(self, colors):
        """Suggest complementary colors that might be missing"""
        suggestions = []
        
        if not colors:
            return suggestions
        
        # Analyze what's missing
        color_categories = [self.categorize_color(color) for color in colors]
        
        # Check for missing neutrals
        if 'gray' not in color_categories and 'white' not in color_categories:
            suggestions.append({
                'color': [200, 200, 200],
                'reason': 'Add a neutral gray for balance',
                'name': 'Neutral Gray'
            })
        
        # Check for missing warm accent
        warm_colors = ['red', 'orange', 'yellow']
        if not any(cat in warm_colors for cat in color_categories):
            suggestions.append({
                'color': [255, 140, 60],
                'reason': 'Consider a warm accent color',
                'name': 'Warm Accent'
            })
        
        # Check for missing cool tone
        cool_colors = ['blue', 'green', 'purple']
        if not any(cat in cool_colors for cat in color_categories):
            suggestions.append({
                'color': [60, 140, 200],
                'reason': 'A cool tone could add depth',
                'name': 'Cool Depth'
            })
        
        return suggestions[:3]  # Max 3 suggestions

extractor = AdvancedColorExtractor()

@app.route('/extract-palette', methods=['POST'])
def extract_palette():
    try:
        # Get image from request
        if 'image' not in request.files:
            return jsonify({'error': 'No image provided'}), 400
        
        image_file = request.files['image']
        
        # Convert to OpenCV format
        image_stream = io.BytesIO(image_file.read())
        pil_image = Image.open(image_stream)
        opencv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
        
        # Extract colors
        colors = extractor.extract_colors_kmeans(opencv_image, n_colors=8)
        
        # Process each color
        processed_colors = []
        for i, color in enumerate(colors):
            rgb = [int(c) for c in color]
            color_data = {
                'id': i,
                'rgb': rgb,
                'hex': extractor.rgb_to_hex(rgb),
                'hsl': extractor.rgb_to_hsl(rgb),
                'cmyk': extractor.rgb_to_cmyk(rgb),
                'name': extractor.get_color_name(rgb),
                'category': extractor.categorize_color(rgb)
            }
            processed_colors.append(color_data)
        
        # Analyze palette
        analysis = extractor.analyze_palette_mood([c['rgb'] for c in processed_colors])
        
        # Generate variations
        variations = extractor.generate_variations([c['rgb'] for c in processed_colors])
        
        # Process variations to include all formats
        processed_variations = {}
        for var_name, var_colors in variations.items():
            processed_variations[var_name] = []
            for color in var_colors:
                processed_variations[var_name].append({
                    'rgb': color,
                    'hex': extractor.rgb_to_hex(color),
                    'name': extractor.get_color_name(color)
                })
        
        # Get complementary suggestions
        suggestions = extractor.suggest_complementary_colors([c['rgb'] for c in processed_colors])
        
        # Generate export formats
        exports = {
            'css_variables': generate_css_variables(processed_colors),
            'scss_variables': generate_scss_variables(processed_colors),
            'figma_tokens': generate_figma_tokens(processed_colors),
            'adobe_ase': 'Base64 encoded ASE file would go here',  # Placeholder
            'tailwind_config': generate_tailwind_config(processed_colors)
        }
        
        response = {
            'colors': processed_colors,
            'analysis': analysis,
            'variations': processed_variations,
            'suggestions': suggestions,
            'exports': exports,
            'metadata': {
                'total_colors': len(processed_colors),
                'dominant_category': analysis['color_distribution'],
                'palette_id': f"palette_{hash(str(processed_colors)) % 100000}"
            }
        }
        
        return jsonify(response)
        
    except Exception as e:
        return jsonify({'error': str(e)}), 500

def generate_css_variables(colors):
    """Generate CSS custom properties"""
    css = ":root {\n"
    for i, color in enumerate(colors):
        css += f"  --color-{i+1}: {color['hex']};\n"
        css += f"  --color-{color['name'].lower().replace(' ', '-')}: {color['hex']};\n"
    css += "}"
    return css

def generate_scss_variables(colors):
    """Generate SCSS variables"""
    scss = ""
    for i, color in enumerate(colors):
        scss += f"$color-{i+1}: {color['hex']};\n"
        scss += f"$color-{color['name'].lower().replace(' ', '-')}: {color['hex']};\n"
    return scss

def generate_figma_tokens(colors):
    """Generate design tokens JSON for Figma"""
    tokens = {
        "color": {}
    }
    for i, color in enumerate(colors):
        tokens["color"][f"color-{i+1}"] = {
            "value": color['hex'],
            "type": "color",
            "description": f"{color['name']} - {color['category']}"
        }
    return json.dumps(tokens, indent=2)

def generate_tailwind_config(colors):
    """Generate Tailwind CSS config"""
    config = "module.exports = {\n  theme: {\n    extend: {\n      colors: {\n"
    for i, color in enumerate(colors):
        safe_name = re.sub(r'[^a-zA-Z0-9]', '', color['name'].lower())
        config += f"        '{safe_name}': '{color['hex']}',\n"
    config += "      }\n    }\n  }\n}"
    return config

@app.route('/health', methods=['GET'])
def health_check():
    return jsonify({'status': 'healthy', 'service': 'Advanced Color Palette API'})

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, debug=False)