Spaces:
Sleeping
Sleeping
File size: 16,200 Bytes
7ba7e21 8542caf 7ba7e21 8542caf 7ba7e21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
from flask import Flask, request, jsonify
from flask_cors import CORS
import cv2
import numpy as np
from PIL import Image
import io
import base64
import colorsys
from sklearn.cluster import KMeans
import webcolors
import math
from collections import Counter
import json
import re
import traceback
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
CORS(app, origins=["*"])
# Add a simple root route
@app.route('/', methods=['GET'])
def home():
return jsonify({
'message': 'AI-Powered Color Palette API',
'version': '1.0.0',
'endpoints': {
'extract_palette': '/extract-palette (POST)',
'health': '/health (GET)'
},
'status': 'running'
})
class AdvancedColorExtractor:
def __init__(self):
# Color psychology and context mappings
self.color_moods = {
'red': ['passionate', 'energetic', 'bold', 'exciting'],
'orange': ['warm', 'creative', 'enthusiastic', 'adventurous'],
'yellow': ['optimistic', 'cheerful', 'innovative', 'bright'],
'green': ['natural', 'peaceful', 'growth', 'harmony'],
'blue': ['trustworthy', 'calm', 'professional', 'serene'],
'purple': ['luxurious', 'creative', 'mysterious', 'royal'],
'pink': ['playful', 'romantic', 'gentle', 'nurturing'],
'brown': ['earthy', 'stable', 'rustic', 'organic'],
'gray': ['sophisticated', 'neutral', 'balanced', 'modern'],
'black': ['elegant', 'powerful', 'dramatic', 'sleek'],
'white': ['clean', 'pure', 'minimal', 'fresh']
}
self.creative_names = {
'red': ['Crimson Fire', 'Ruby Passion', 'Scarlet Dream', 'Cherry Burst'],
'orange': ['Sunset Glow', 'Autumn Spice', 'Coral Reef', 'Amber Light'],
'yellow': ['Golden Hour', 'Sunflower Joy', 'Lemon Zest', 'Honey Drip'],
'green': ['Forest Whisper', 'Emerald Isle', 'Sage Wisdom', 'Mint Fresh'],
'blue': ['Ocean Depth', 'Sky Canvas', 'Midnight Azure', 'Arctic Breeze'],
'purple': ['Lavender Dreams', 'Royal Velvet', 'Mystic Plum', 'Amethyst Glow'],
'pink': ['Rose Petal', 'Blush Soft', 'Flamingo Pink', 'Cotton Candy'],
'brown': ['Cocoa Rich', 'Earth Clay', 'Leather Warm', 'Coffee Bean'],
'gray': ['Storm Cloud', 'Silver Mist', 'Charcoal Deep', 'Dove Wing'],
'black': ['Midnight Black', 'Obsidian Dark', 'Shadow Deep', 'Carbon Night'],
'white': ['Pure Snow', 'Cloud White', 'Pearl Shine', 'Arctic White']
}
def extract_colors_kmeans(self, image_data, n_colors=8):
"""Extract colors using improved K-means clustering"""
# Convert to RGB and reshape
image_rgb = cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB)
image_rgb = image_rgb.reshape((-1, 3))
# Remove very dark and very light pixels for better clustering
brightness = np.mean(image_rgb, axis=1)
filtered_pixels = image_rgb[(brightness > 20) & (brightness < 235)]
if len(filtered_pixels) < n_colors:
filtered_pixels = image_rgb
# Apply K-means clustering
kmeans = KMeans(n_clusters=n_colors, random_state=42, n_init=10)
kmeans.fit(filtered_pixels)
colors = kmeans.cluster_centers_.astype(int)
# Sort colors by frequency
labels = kmeans.labels_
label_counts = Counter(labels)
sorted_colors = [colors[i] for i in sorted(label_counts.keys(),
key=lambda x: label_counts[x], reverse=True)]
return sorted_colors
def rgb_to_hex(self, rgb):
"""Convert RGB to HEX"""
return "#{:02x}{:02x}{:02x}".format(int(rgb[0]), int(rgb[1]), int(rgb[2]))
def rgb_to_hsl(self, rgb):
"""Convert RGB to HSL"""
r, g, b = rgb[0]/255.0, rgb[1]/255.0, rgb[2]/255.0
h, l, s = colorsys.rgb_to_hls(r, g, b)
return {
'h': int(h * 360),
's': int(s * 100),
'l': int(l * 100)
}
def rgb_to_cmyk(self, rgb):
"""Convert RGB to CMYK"""
r, g, b = rgb[0]/255.0, rgb[1]/255.0, rgb[2]/255.0
k = 1 - max(r, g, b)
if k == 1:
return {'c': 0, 'm': 0, 'y': 0, 'k': 100}
c = (1 - r - k) / (1 - k)
m = (1 - g - k) / (1 - k)
y = (1 - b - k) / (1 - k)
return {
'c': int(c * 100),
'm': int(m * 100),
'y': int(y * 100),
'k': int(k * 100)
}
def get_color_name(self, rgb):
"""Get creative color name based on RGB values"""
try:
# Try to get closest web color name
closest_name = webcolors.rgb_to_name(rgb)
base_color = self.categorize_color(rgb)
return self.creative_names.get(base_color, ['Unique Color'])[0]
except ValueError:
# Generate creative name based on color category
base_color = self.categorize_color(rgb)
names = self.creative_names.get(base_color, ['Mystery Color'])
# Use brightness and saturation to pick variation
brightness = sum(rgb) / 3
if brightness > 200:
return f"Light {names[0]}"
elif brightness < 80:
return f"Deep {names[0]}"
else:
return names[0]
def categorize_color(self, rgb):
"""Categorize RGB color into basic color families"""
r, g, b = rgb
# Convert to HSV for better color categorization
hsv = colorsys.rgb_to_hsv(r/255, g/255, b/255)
h, s, v = hsv[0] * 360, hsv[1] * 100, hsv[2] * 100
# Handle grayscale
if s < 10:
if v > 90:
return 'white'
elif v < 10:
return 'black'
else:
return 'gray'
# Categorize by hue
if h < 15 or h >= 345:
return 'red'
elif h < 45:
return 'orange'
elif h < 75:
return 'yellow'
elif h < 165:
return 'green'
elif h < 255:
return 'blue'
elif h < 285:
return 'purple'
elif h < 345:
return 'pink'
else:
return 'red'
def analyze_palette_mood(self, colors):
"""Analyze overall mood and context of the palette"""
moods = []
color_categories = []
for color in colors:
category = self.categorize_color(color)
color_categories.append(category)
moods.extend(self.color_moods.get(category, []))
# Count mood frequencies
mood_counts = Counter(moods)
dominant_moods = [mood for mood, count in mood_counts.most_common(3)]
# Suggest use cases based on color combination
suggestions = self.suggest_use_cases(color_categories, dominant_moods)
return {
'moods': dominant_moods,
'suggested_uses': suggestions,
'color_distribution': dict(Counter(color_categories))
}
def suggest_use_cases(self, color_categories, moods):
"""Suggest use cases based on color analysis"""
suggestions = []
# Nature-heavy palettes
if color_categories.count('green') >= 2 or color_categories.count('brown') >= 2:
suggestions.extend(['Outdoor brands', 'Environmental websites', 'Natural products'])
# Blue-heavy palettes
if color_categories.count('blue') >= 2:
suggestions.extend(['Corporate websites', 'Healthcare', 'Technology apps'])
# Warm color palettes
warm_colors = color_categories.count('red') + color_categories.count('orange') + color_categories.count('yellow')
if warm_colors >= 3:
suggestions.extend(['Food & dining', 'Creative agencies', 'Entertainment'])
# Mood-based suggestions
if 'energetic' in moods:
suggestions.append('Fitness & sports')
if 'luxurious' in moods:
suggestions.append('Premium brands')
if 'calm' in moods:
suggestions.append('Wellness & spa')
return list(set(suggestions))[:5] # Return unique suggestions, max 5
def generate_variations(self, colors):
"""Generate palette variations"""
variations = {}
# Brighter version
brighter = []
for color in colors:
hsv = colorsys.rgb_to_hsv(color[0]/255, color[1]/255, color[2]/255)
new_hsv = (hsv[0], min(1.0, hsv[1] * 1.2), min(1.0, hsv[2] * 1.1))
new_rgb = colorsys.hsv_to_rgb(*new_hsv)
brighter.append([int(new_rgb[0] * 255), int(new_rgb[1] * 255), int(new_rgb[2] * 255)])
variations['brighter'] = brighter
# Softer version
softer = []
for color in colors:
hsv = colorsys.rgb_to_hsv(color[0]/255, color[1]/255, color[2]/255)
new_hsv = (hsv[0], hsv[1] * 0.6, hsv[2] * 0.9 + 0.1)
new_rgb = colorsys.hsv_to_rgb(*new_hsv)
softer.append([int(new_rgb[0] * 255), int(new_rgb[1] * 255), int(new_rgb[2] * 255)])
variations['softer'] = softer
# Monochrome version (based on dominant color)
if colors:
dominant_color = colors[0]
base_hue = colorsys.rgb_to_hsv(dominant_color[0]/255, dominant_color[1]/255, dominant_color[2]/255)[0]
monochrome = []
for i in range(8):
sat = 0.2 + (i * 0.1)
val = 0.3 + (i * 0.08)
rgb = colorsys.hsv_to_rgb(base_hue, min(1.0, sat), min(1.0, val))
monochrome.append([int(rgb[0] * 255), int(rgb[1] * 255), int(rgb[2] * 255)])
variations['monochrome'] = monochrome
return variations
def suggest_complementary_colors(self, colors):
"""Suggest complementary colors that might be missing"""
suggestions = []
if not colors:
return suggestions
# Analyze what's missing
color_categories = [self.categorize_color(color) for color in colors]
# Check for missing neutrals
if 'gray' not in color_categories and 'white' not in color_categories:
suggestions.append({
'color': [200, 200, 200],
'reason': 'Add a neutral gray for balance',
'name': 'Neutral Gray'
})
# Check for missing warm accent
warm_colors = ['red', 'orange', 'yellow']
if not any(cat in warm_colors for cat in color_categories):
suggestions.append({
'color': [255, 140, 60],
'reason': 'Consider a warm accent color',
'name': 'Warm Accent'
})
# Check for missing cool tone
cool_colors = ['blue', 'green', 'purple']
if not any(cat in cool_colors for cat in color_categories):
suggestions.append({
'color': [60, 140, 200],
'reason': 'A cool tone could add depth',
'name': 'Cool Depth'
})
return suggestions[:3] # Max 3 suggestions
extractor = AdvancedColorExtractor()
@app.route('/extract-palette', methods=['POST'])
def extract_palette():
try:
# Get image from request
if 'image' not in request.files:
return jsonify({'error': 'No image provided'}), 400
image_file = request.files['image']
# Convert to OpenCV format
image_stream = io.BytesIO(image_file.read())
pil_image = Image.open(image_stream)
opencv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
# Extract colors
colors = extractor.extract_colors_kmeans(opencv_image, n_colors=8)
# Process each color
processed_colors = []
for i, color in enumerate(colors):
rgb = [int(c) for c in color]
color_data = {
'id': i,
'rgb': rgb,
'hex': extractor.rgb_to_hex(rgb),
'hsl': extractor.rgb_to_hsl(rgb),
'cmyk': extractor.rgb_to_cmyk(rgb),
'name': extractor.get_color_name(rgb),
'category': extractor.categorize_color(rgb)
}
processed_colors.append(color_data)
# Analyze palette
analysis = extractor.analyze_palette_mood([c['rgb'] for c in processed_colors])
# Generate variations
variations = extractor.generate_variations([c['rgb'] for c in processed_colors])
# Process variations to include all formats
processed_variations = {}
for var_name, var_colors in variations.items():
processed_variations[var_name] = []
for color in var_colors:
processed_variations[var_name].append({
'rgb': color,
'hex': extractor.rgb_to_hex(color),
'name': extractor.get_color_name(color)
})
# Get complementary suggestions
suggestions = extractor.suggest_complementary_colors([c['rgb'] for c in processed_colors])
# Generate export formats
exports = {
'css_variables': generate_css_variables(processed_colors),
'scss_variables': generate_scss_variables(processed_colors),
'figma_tokens': generate_figma_tokens(processed_colors),
'adobe_ase': 'Base64 encoded ASE file would go here', # Placeholder
'tailwind_config': generate_tailwind_config(processed_colors)
}
response = {
'colors': processed_colors,
'analysis': analysis,
'variations': processed_variations,
'suggestions': suggestions,
'exports': exports,
'metadata': {
'total_colors': len(processed_colors),
'dominant_category': analysis['color_distribution'],
'palette_id': f"palette_{hash(str(processed_colors)) % 100000}"
}
}
return jsonify(response)
except Exception as e:
return jsonify({'error': str(e)}), 500
def generate_css_variables(colors):
"""Generate CSS custom properties"""
css = ":root {\n"
for i, color in enumerate(colors):
css += f" --color-{i+1}: {color['hex']};\n"
css += f" --color-{color['name'].lower().replace(' ', '-')}: {color['hex']};\n"
css += "}"
return css
def generate_scss_variables(colors):
"""Generate SCSS variables"""
scss = ""
for i, color in enumerate(colors):
scss += f"$color-{i+1}: {color['hex']};\n"
scss += f"$color-{color['name'].lower().replace(' ', '-')}: {color['hex']};\n"
return scss
def generate_figma_tokens(colors):
"""Generate design tokens JSON for Figma"""
tokens = {
"color": {}
}
for i, color in enumerate(colors):
tokens["color"][f"color-{i+1}"] = {
"value": color['hex'],
"type": "color",
"description": f"{color['name']} - {color['category']}"
}
return json.dumps(tokens, indent=2)
def generate_tailwind_config(colors):
"""Generate Tailwind CSS config"""
config = "module.exports = {\n theme: {\n extend: {\n colors: {\n"
for i, color in enumerate(colors):
safe_name = re.sub(r'[^a-zA-Z0-9]', '', color['name'].lower())
config += f" '{safe_name}': '{color['hex']}',\n"
config += " }\n }\n }\n}"
return config
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({'status': 'healthy', 'service': 'Advanced Color Palette API'})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=False) |