Spaces:
Build error
Build error
File size: 15,683 Bytes
54e92ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import os
import sys
import warnings
# Suppress specific warnings
warnings.filterwarnings("ignore", message="This sequence already has </s>.")
# Append path for module imports
scripts_path = os.path.abspath(os.path.join('..', 'scripts'))
sys.path.append(scripts_path)
# Standard library imports
import random
import string
# Third-party imports
import json
import numpy as np
import pandas as pd
import torch
import nltk
from dateutil.parser import parse
from nltk.stem import PorterStemmer
from nltk.corpus import stopwords, wordnet as wn
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# from textdistance import levenshtein
from rapidfuzz import fuzz
from rapidfuzz.distance import Levenshtein as levenshtein
from sense2vec import Sense2Vec
from transformers import T5ForConditionalGeneration, T5Tokenizer
from sentence_transformers import SentenceTransformer
# Download necessary NLTK data
nltk.download('omw-1.4')
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('brown')
nltk.download('wordnet')
from typing import List, Dict
import re
# Initialize models
t5ag_model = T5ForConditionalGeneration.from_pretrained("miiiciiii/I-Comprehend_ag")
t5ag_tokenizer = T5Tokenizer.from_pretrained("miiiciiii/I-Comprehend_ag", legacy=False)
t5qg_model = T5ForConditionalGeneration.from_pretrained("miiiciiii/I-Comprehend_qg")
t5qg_tokenizer = T5Tokenizer.from_pretrained("miiiciiii/I-Comprehend_qg", legacy=False)
s2v = Sense2Vec().from_disk(S2V_MODEL_PATH)
sentence_transformer_model = SentenceTransformer("sentence-transformers/LaBSE")
def answer_question(question, context):
"""Generate an answer for a given question and context."""
input_text = f"question: {question} context: {context}"
input_ids = t5ag_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
with torch.no_grad():
output = t5ag_model.generate(input_ids, max_length=512, num_return_sequences=1, max_new_tokens=200)
return t5ag_tokenizer.decode(output[0], skip_special_tokens=True).capitalize()
def get_passage(passage):
"""Generate a random context from the dataset."""
return passage.sample(n=1)['context'].values[0]
def get_question(context, answer, model, tokenizer):
"""Generate a question for the given answer and context."""
answer_span = context.replace(answer, f"<hl>{answer}<hl>", 1) + "</s>"
inputs = tokenizer(answer_span, return_tensors="pt")
question = model.generate(input_ids=inputs.input_ids, max_length=50)[0]
return tokenizer.decode(question, skip_special_tokens=True)
def get_keywords(passage):
"""Extract keywords using TF-IDF."""
try:
vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = vectorizer.fit_transform([passage])
feature_names = vectorizer.get_feature_names_out()
tfidf_scores = tfidf_matrix.toarray().flatten() # type: ignore
word_scores = dict(zip(feature_names, tfidf_scores))
sorted_words = sorted(word_scores.items(), key=lambda x: x[1], reverse=True)
keywords = [word for word, score in sorted_words]
return keywords
except Exception as e:
print(f"Error extracting keywords: {e}")
return []
def classify_question_type(question: str) -> str:
"""
Classify the type of question as literal, evaluative, or inferential.
Parameters:
question (str): The question to classify.
Returns:
str: The type of the question ('literal', 'evaluative', or 'inferential').
"""
# Define keywords or patterns for each question type
literal_keywords = [
'what', 'when', 'where', 'who', 'how many', 'how much',
'which', 'name', 'list', 'identify', 'define', 'describe',
'state', 'mention'
]
evaluative_keywords = [
'evaluate', 'justify', 'explain why', 'assess', 'critique',
'discuss', 'judge', 'opinion', 'argue', 'agree or disagree',
'defend', 'support your answer', 'weigh the pros and cons',
'compare', 'contrast'
]
inferential_keywords = [
'why', 'how', 'what if', 'predict', 'suggest', 'imply',
'conclude', 'infer', 'reason', 'what might', 'what could',
'what would happen if', 'speculate', 'deduce', 'interpret',
'hypothesize', 'assume'
]
question_lower = question.lower()
# Check for literal question keywords
if any(keyword in question_lower for keyword in literal_keywords):
return 'literal'
# Check for evaluative question keywords
if any(keyword in question_lower for keyword in evaluative_keywords):
return 'evaluative'
# Check for inferential question keywords
if any(keyword in question_lower for keyword in inferential_keywords):
return 'inferential'
# Default to 'unknown' if no pattern matches
return 'unknown'
def filter_same_sense_words(original, wordlist):
"""Filter words that have the same sense as the original word."""
try:
base_sense = original.split('|')[1] # Ensure there is a sense part
except IndexError:
print(f"Warning: The original phrase '{original}' does not have a sense part.")
return wordlist # Return all words if the sense part is missing
return [word[0].split('|')[0].replace("_", " ").title().strip() for word in wordlist if word[0].split('|')[1] == base_sense]
def extract_similar_keywords(input_phrases, topn=5):
"""Call get_distractors and extract only the similar_keywords values."""
distractors_result = get_distractors(input_phrases, topn)
similar_keywords_list = [result["similar_keywords"] for result in distractors_result]
return similar_keywords_list
def get_max_similarity_score(wordlist, word):
"""Get the maximum similarity score between the word and a list of words."""
return max(levenshtein.normalized_similarity(word.lower(), each.lower()) for each in wordlist)
def mmr(doc_embedding, word_embeddings, words, top_n, lambda_param):
"""Maximal Marginal Relevance (MMR) for keyword extraction."""
try:
word_doc_similarity = cosine_similarity(word_embeddings, doc_embedding)
word_similarity = cosine_similarity(word_embeddings)
keywords_idx = [np.argmax(word_doc_similarity)]
candidates_idx = [i for i in range(len(words)) if i != keywords_idx[0]]
for _ in range(top_n - 1):
candidate_similarities = word_doc_similarity[candidates_idx, :]
target_similarities = np.max(word_similarity[candidates_idx][:, keywords_idx], axis=1)
mmr = (lambda_param * candidate_similarities) - ((1 - lambda_param) * target_similarities.reshape(-1, 1))
mmr_idx = candidates_idx[np.argmax(mmr)]
keywords_idx.append(mmr_idx)
candidates_idx.remove(mmr_idx)
return [words[idx] for idx in keywords_idx]
except Exception as e:
print(f"Error in MMR: {e}")
return []
def format_phrase(phrase):
"""Format phrases by replacing spaces with underscores and adding default |n."""
return phrase.replace(" ", "_") + "|n"
def is_valid_distractor(distractor, input_phrase):
"""Check if the distractor is valid by ensuring it's alphabetic and relevant."""
if not re.match(r'^[a-zA-Z\s]+$', distractor):
return False
word_count = len(distractor.split())
if word_count < 1 or word_count > 4:
return False
return True
def filter_distractors(input_phrase, similar_keywords, topn):
"""Filter distractors to ensure they match word count, aren't identical to the input,
and aren't too similar to each other or the input (e.g., stem similarity)."""
word_count = len(input_phrase.split())
filtered_keywords = []
stemmer = PorterStemmer()
input_stem = stemmer.stem(input_phrase.lower())
for keyword in similar_keywords:
keyword_stem = stemmer.stem(keyword.lower())
if (len(keyword.split()) == word_count and
keyword.lower() != input_phrase.lower() and
keyword_stem != input_stem and
is_valid_distractor(keyword, input_phrase)):
if all(stemmer.stem(kw.lower()) != keyword_stem for kw in filtered_keywords):
filtered_keywords.append(keyword)
if len(filtered_keywords) == topn:
break
return filtered_keywords
def get_distractors(input_phrases, topn=5):
"""Find similar keywords for a list of input phrases using Sense2Vec and WordNet."""
result_list = []
for phrase in input_phrases:
formatted_phrase = format_phrase(phrase)
# Check if the phrase exists in the Sense2Vec model
if formatted_phrase in s2v:
# Get similar phrases from Sense2Vec
similar_phrases = s2v.most_similar(formatted_phrase, n=topn * 2) # Get more to filter later
similar_keywords = [item[0].split("|")[0].replace("_", " ") for item in similar_phrases]
else:
# List similar keys that might exist in the model for exploration
print(f"'{formatted_phrase}' not found in the model. Exploring similar available keys...")
available_keys = [key for key in s2v.keys() if phrase.split()[0] in key or phrase.split()[-1] in key]
print(f"Available keys related to '{phrase}': {available_keys}")
# Use WordNet to find synonyms if available keys are empty
if not available_keys:
print(f"No close match in the model for '{phrase}'. Trying WordNet for synonyms...")
synonyms = set()
for syn in wn.synsets(phrase.replace(" ", "_")):
for lemma in syn.lemmas():
synonyms.add(lemma.name().replace("_", " "))
similar_keywords = list(synonyms)[:topn * 2] if synonyms else ["No match found"]
else:
# Provide available keys as similar suggestions
similar_keywords = [key.split("|")[0].replace("_", " ") for key in available_keys[:topn * 2]]
# Filter distractors to match word count, avoid identical or stem-similar words, and check format
final_distractors = filter_distractors(phrase, similar_keywords, topn)
# Further filter out words with the same sense
final_distractors = filter_same_sense_words(phrase, final_distractors)
result_list.append({
"phrase": phrase,
"similar_keywords": final_distractors
})
return result_list
def get_mca_questions(context, qg_model, qg_tokenizer, sentence_transformer_model, num_questions=5, max_attempts=2) -> List[Dict]:
"""
Generate multiple-choice questions for a given context.
Parameters:
context (str): The context from which questions are generated.
qg_model (T5ForConditionalGeneration): The question generation model.
qg_tokenizer (T5Tokenizer): The tokenizer for the question generation model.
s2v (Sense2Vec): The Sense2Vec model for finding similar words.
sentence_transformer_model (SentenceTransformer): The sentence transformer model for embeddings.
num_questions (int): The number of questions to generate.
max_attempts (int): The maximum number of attempts to generate questions.
Returns:
list: A list of dictionaries with questions and their corresponding distractors.
"""
output_list = []
imp_keywords = get_keywords(context)
print(f"[DEBUG] Length: {len(imp_keywords)}, Extracted keywords: {imp_keywords}")
generated_questions = set()
generated_answers = set()
attempts = 0
while len(output_list) < num_questions and attempts < max_attempts:
attempts += 1
for keyword in imp_keywords:
if len(output_list) >= num_questions:
break
question = get_question(context, keyword, qg_model, qg_tokenizer)
print(f"[DEBUG] Generated question: '{question}' for keyword: '{keyword}'")
# Encode the new question
new_question_embedding = sentence_transformer_model.encode(question, convert_to_tensor=True)
is_similar = False
# Check similarity with existing questions
for generated_q in generated_questions:
existing_question_embedding = sentence_transformer_model.encode(generated_q, convert_to_tensor=True)
similarity = cosine_similarity(new_question_embedding.unsqueeze(0), existing_question_embedding.unsqueeze(0))[0][0]
if similarity > 0.8:
is_similar = True
print(f"[DEBUG] Question '{question}' is too similar to an existing question, skipping.")
break
if is_similar:
continue
# Generate and check answer
t5_answer = answer_question(question, context)
print(f"[DEBUG] Generated answer: '{t5_answer}' for question: '{question}'")
# Skip answers longer than 3 words
if len(t5_answer.split()) > 3:
print(f"[DEBUG] Answer '{t5_answer}' is too long, skipping.")
continue
if t5_answer in generated_answers:
print(f"[DEBUG] Answer '{t5_answer}' has already been generated, skipping question.")
continue
generated_questions.add(question)
generated_answers.add(t5_answer)
# Generate distractors
distractors = extract_similar_keywords([t5_answer], topn=5)[0]
print(f"list of distractors : {distractors}")
print(f"length of distractors {len(distractors)}")
print(f"type : {type(distractors)}")
# Remove any distractor that is the same as the correct answer
distractors = [d for d in distractors if d.lower() != t5_answer.lower()]
print(f"Filtered distractors (without answer): {distractors}")
# Ensure there are exactly 3 distractors
if len(distractors) < 3:
# Fill with random keywords from the imp_keywords list until we have 3 distractors
while len(distractors) < 3:
random_keyword = random.choice(imp_keywords)
# Ensure the random keyword isn't the same as the answer or already a distractor
if random_keyword.lower() != t5_answer.lower() and random_keyword not in distractors:
distractors.append(random_keyword)
# Limit to 3 distractors
distractors = distractors[:3]
print(f"[DEBUG] Final distractors: {distractors} for question: '{question}'")
choices = distractors + [t5_answer]
choices = [item.title() for item in choices]
random.shuffle(choices)
print(f"[DEBUG] Options: {choices} for answer: '{t5_answer}'")
# Classify question type
question_type = classify_question_type(question)
output_list.append({
'answer': t5_answer,
'answer_length': len(t5_answer),
'choices': choices,
'passage': context,
'passage_length': len(context),
'question': question,
'question_length': len(question),
'question_type': question_type
})
print(f"[DEBUG] Generated {len(output_list)} questions so far after {attempts} attempts")
return output_list[:num_questions]
|