File size: 5,223 Bytes
0e95308
 
 
1a30368
bf8e143
b04f2e5
dba6f87
 
0e95308
bf8e143
0e95308
 
bf8e143
 
0e95308
dba6f87
3e83acd
 
5dce460
 
 
 
e518ace
 
 
 
 
 
 
dba6f87
 
 
 
 
 
 
 
 
c54cf3b
 
26e824b
 
c54cf3b
2dff2c5
f687536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba6f87
bf8e143
0e95308
bf8e143
 
 
 
 
0e95308
 
 
 
bf8e143
0e95308
bf8e143
0e95308
 
dba6f87
04356f4
1926a25
 
dba6f87
cb720fe
0280e01
dba6f87
9e69b9a
 
dba6f87
0280e01
04356f4
dba6f87
04356f4
0280e01
 
7b27360
2978c6a
 
 
 
f687536
 
dba6f87
04356f4
2978c6a
dba6f87
 
 
 
 
 
 
 
 
 
 
 
 
 
2978c6a
dba6f87
 
 
 
 
 
 
 
 
04356f4
 
2978c6a
04356f4
dba6f87
04356f4
dba6f87
 
2978c6a
dba6f87
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import json
from sentence_transformers import SentenceTransformer, util
from groq import Groq
from datetime import datetime
import os
import pandas as pd
from datasets import load_dataset, Dataset
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Initialize Groq client
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))

# Load similarity model
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')

# Config
HF_DATASET_REPO = "midrees2806/unmatched_queries"
HF_TOKEN = os.getenv("HF_TOKEN")

# Greeting list
GREETINGS = [
    "hi", "hello", "hey", "good morning", "good afternoon", "good evening",
    "assalam o alaikum", "salam", "aoa", "hi there",
    "hey there", "greetings"
]

# Load local dataset
try:
    with open('dataset.json', 'r') as f:
        dataset = json.load(f)
    if not all(isinstance(item, dict) and 'Question' in item and 'Answer' in item for item in dataset):
        raise ValueError("Invalid dataset structure")
except Exception as e:
    print(f"Error loading dataset: {e}")
    dataset = []

# Precompute embeddings
dataset_questions = [item.get("Question", "").lower().strip() for item in dataset]
dataset_answers = [item.get("Answer", "") for item in dataset]
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)

# Save unmatched queries to Hugging Face
def manage_unmatched_queries(query: str):
    try:
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        try:
            ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
            df = ds["train"].to_pandas()
        except:
            df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
        if query not in df["Query"].values:
            new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
            df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
            updated_ds = Dataset.from_pandas(df)
            updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
    except Exception as e:
        print(f"Failed to save query: {e}")

# Query Groq LLM
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
    try:
        chat_completion = groq_client.chat.completions.create(
            messages=[{
                "role": "user",
                "content": prompt
            }],
            model=model_name,
            temperature=0.7,
            max_tokens=500
        )
        return chat_completion.choices[0].message.content.strip()
    except Exception as e:
        print(f"Error querying Groq API: {e}")
        return ""

# Main logic function to be called from Gradio
def get_best_answer(user_input):
    if not user_input.strip():
        return "Please enter a valid question."

    user_input_lower = user_input.lower().strip()

    if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS):
        return "Please ask your question properly with at least 3 words."

    if any(keyword in user_input_lower for keyword in ["fee structure", "fees structure", "semester fees", "semester fee"]):
        return (
            "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
            "You'll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
            "πŸ”— https://ue.edu.pk/allfeestructure.php"
        )

    user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
    similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
    best_match_idx = similarities.argmax().item()
    best_score = similarities[best_match_idx].item()

    if best_score < 0.65:
        manage_unmatched_queries(user_input)

    if best_score >= 0.65:
        original_answer = dataset_answers[best_match_idx]
        prompt = f"""Name is UOE AI Assistant! You are an official assistant for the University of Education Lahore.

Rephrase the following official answer clearly and professionally. 
Use structured formatting (like headings, bullet points, or numbered lists) where appropriate.
DO NOT add any new or extra information. ONLY rephrase and improve the clarity and formatting of the original answer.

### Question:
{user_input}

### Original Answer:
{original_answer}

### Rephrased Answer:
"""
    else:
        prompt = f"""Name is UOE AI Assistant! As an official assistant for University of Education Lahore, provide a helpful response:
Include relevant details about university policies.
If unsure, direct to official channels.

### Question:
{user_input}

### Official Answer:
"""

    llm_response = query_groq_llm(prompt)

    if llm_response:
        for marker in ["Improved Answer:", "Official Answer:", "Rephrased Answer:"]:
            if marker in llm_response:
                return llm_response.split(marker)[-1].strip()
        return llm_response
    else:
        return dataset_answers[best_match_idx] if best_score >= 0.65 else (
            "For official information:\n"
            "πŸ“ž +92-42-99262231-33\n"
            "βœ‰οΈ info@ue.edu.pk\n"
            "🌐 https://ue.edu.pk"
        )