Spaces:
Running
Running
File size: 21,062 Bytes
5325553 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import gradio as gr
import json
import requests
import urllib.request
import os
import ssl
import base64
from PIL import Image
import soundfile as sf
import mimetypes
import logging
from io import BytesIO
import tempfile
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Azure ML endpoint configuration
url = os.getenv("AZURE_ENDPOINT")
api_key = os.getenv("AZURE_API_KEY")
# Initialize MIME types
mimetypes.init()
def call_aml_endpoint(payload, url, api_key):
"""Call Azure ML endpoint with the given payload."""
# Allow self-signed HTTPS certificates
def allow_self_signed_https(allowed):
if allowed and not os.environ.get('PYTHONHTTPSVERIFY', '') and getattr(ssl, '_create_unverified_context', None):
ssl._create_default_https_context = ssl._create_unverified_context
allow_self_signed_https(True)
# Set parameters (can be adjusted based on your needs)
parameters = {"temperature": 0.7}
if "parameters" not in payload["input_data"]:
payload["input_data"]["parameters"] = parameters
# Encode the request body
body = str.encode(json.dumps(payload))
if not api_key:
raise Exception("A key should be provided to invoke the endpoint")
# Set up headers
headers = {'Content-Type': 'application/json', 'Authorization': ('Bearer ' + api_key)}
# Create and send the request
req = urllib.request.Request(url, body, headers)
try:
logger.info(f"Sending request to {url}")
response = urllib.request.urlopen(req)
result = response.read().decode('utf-8')
logger.info("Received response successfully")
return json.loads(result)
except urllib.error.HTTPError as error:
logger.error(f"Request failed with status code: {error.code}")
logger.error(f"Headers: {error.info()}")
error_message = error.read().decode("utf8", 'ignore')
logger.error(f"Error message: {error_message}")
return {"error": error_message}
def load_audio_from_url(url):
"""Load audio from a URL using soundfile
Args:
url (str): URL of the audio file
Returns:
tuple: (sample_rate, audio_data) if successful, None otherwise
str: file path to the temporary saved audio file
"""
try:
# Get the audio file from the URL
response = requests.get(url)
response.raise_for_status() # Raise exception for bad status codes
# For other formats that soundfile supports directly (WAV, FLAC, etc.)
audio_data, sample_rate = sf.read(BytesIO(response.content))
# Save to a temporary file to be used by the chatbot
file_extension = os.path.splitext(url)[1].lower()
if not file_extension:
file_extension = '.wav' # Default to .wav if no extension
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=file_extension)
sf.write(temp_file.name, audio_data, sample_rate)
return (sample_rate, audio_data), temp_file.name
except Exception as e:
logger.error(f"Error loading audio from URL: {e}")
return None, None
def encode_base64_from_file(file_path):
"""Encode file content to base64 string and determine MIME type."""
file_extension = os.path.splitext(file_path)[1].lower()
# Map file extensions to MIME types
if file_extension in ['.jpg', '.jpeg']:
mime_type = "image/jpeg"
elif file_extension == '.png':
mime_type = "image/png"
elif file_extension == '.gif':
mime_type = "image/gif"
elif file_extension in ['.bmp', '.tiff', '.webp']:
mime_type = f"image/{file_extension[1:]}"
elif file_extension == '.flac':
mime_type = "audio/flac"
elif file_extension == '.wav':
mime_type = "audio/wav"
elif file_extension == '.mp3':
mime_type = "audio/mpeg"
elif file_extension in ['.m4a', '.aac']:
mime_type = "audio/aac"
elif file_extension == '.ogg':
mime_type = "audio/ogg"
else:
mime_type = "application/octet-stream"
# Read and encode file content
with open(file_path, "rb") as file:
encoded_string = base64.b64encode(file.read()).decode('utf-8')
return encoded_string, mime_type
def process_message(history, message, conversation_state):
"""Process user message and update both history and internal state."""
# Extract text and files
text_content = message["text"] if message["text"] else ""
image_files = []
audio_files = []
# Create content array for internal state
content_items = []
# Add text if available
if text_content:
content_items.append({"type": "text", "text": text_content})
# Process and immediately convert files to base64
if message["files"] and len(message["files"]) > 0:
for file_path in message["files"]:
file_extension = os.path.splitext(file_path)[1].lower()
file_name = os.path.basename(file_path)
# Convert the file to base64 immediately
base64_content, mime_type = encode_base64_from_file(file_path)
# Add to content items for the API
if mime_type.startswith("image/"):
content_items.append({
"type": "image_url",
"image_url": {
"url": f"data:{mime_type};base64,{base64_content}"
}
})
image_files.append(file_path)
elif mime_type.startswith("audio/"):
content_items.append({
"type": "audio_url",
"audio_url": {
"url": f"data:{mime_type};base64,{base64_content}"
}
})
audio_files.append(file_path)
# Only proceed if we have content
if content_items:
# Add to Gradio chatbot history (for display)
history.append({"role": "user", "content": text_content})
# Add file messages if present
for file_path in image_files + audio_files:
history.append({"role": "user", "content": {"path": file_path}})
print(f"DEBUG: history = {history}")
# Add to internal conversation state (with base64 data)
conversation_state.append({
"role": "user",
"content": content_items
})
return history, gr.MultimodalTextbox(value=None, interactive=False), conversation_state
def bot_response(history, conversation_state):
"""Generate bot response based on conversation state."""
if not conversation_state:
return history, conversation_state
# Create the payload
payload = {
"input_data": {
"input_string": conversation_state
}
}
# Log the payload for debugging (without base64 data)
debug_payload = json.loads(json.dumps(payload))
for item in debug_payload["input_data"]["input_string"]:
if "content" in item and isinstance(item["content"], list):
for content_item in item["content"]:
if "image_url" in content_item:
parts = content_item["image_url"]["url"].split(",")
if len(parts) > 1:
content_item["image_url"]["url"] = parts[0] + ",[BASE64_DATA_REMOVED]"
if "audio_url" in content_item:
parts = content_item["audio_url"]["url"].split(",")
if len(parts) > 1:
content_item["audio_url"]["url"] = parts[0] + ",[BASE64_DATA_REMOVED]"
logger.info(f"Sending payload: {json.dumps(debug_payload, indent=2)}")
# Call Azure ML endpoint
response = call_aml_endpoint(payload, url, api_key)
# Extract text response from the Azure ML endpoint response
try:
if isinstance(response, dict):
if "result" in response:
result = response["result"]
elif "output" in response:
# Depending on your API's response format
if isinstance(response["output"], list) and len(response["output"]) > 0:
result = response["output"][0]
else:
result = str(response["output"])
elif "error" in response:
result = f"Error: {response['error']}"
else:
# Just return the whole response as string if we can't parse it
result = f"Received response: {json.dumps(response)}"
else:
result = str(response)
except Exception as e:
result = f"Error processing response: {str(e)}"
# Add bot response to history
if result == "None":
result = "Current implementation does not support text + audio + image inputs in the same conversation. Please hit Clear conversation button."
history.append({"role": "assistant", "content": result})
# Add to conversation state
conversation_state.append({
"role": "assistant",
"content": [{"type": "text", "text": result}]
})
print(f"DEBUG: history after response: {history}")
return history, conversation_state
# Create Gradio demo
with gr.Blocks(theme=gr.themes.Soft()) as demo:
title = gr.Markdown("# Azure ML Multimodal Chatbot Demo")
description = gr.Markdown("""
This demo allows you to interact with a multimodal AI model through Azure ML.
You can type messages, upload images, or record audio to communicate with the AI.
""")
# Store the conversation state with base64 data
conversation_state = gr.State([])
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
type="messages",
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/d/d3/Phi-integrated-information-symbol.png",),
height=600
)
with gr.Row():
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="multiple",
placeholder="Enter a message or upload files (images, audio)...",
show_label=False,
sources=["microphone", "upload"],
)
with gr.Row():
clear_btn = gr.ClearButton([chatbot, chat_input], value="Clear conversation")
clear_btn.click(lambda: [], None, conversation_state) # Also clear the conversation state
gr.HTML("<div style='text-align: right; margin-top: 5px;'><small>Powered by Azure ML</small></div>")
# Define function to handle example submission directly
def handle_example_submission(text, files, history, conv_state):
"""
Process an example submission directly including bot response
This bypasses the regular chat_input.submit flow
"""
# Create a message object similar to what would be submitted by the user
message = {"text": text, "files": files if files else []}
# Use the same processing function as normal submissions
new_history, _, new_conv_state = process_message(history, message, conv_state)
# Then immediately trigger the bot response
final_history, final_conv_state = bot_response(new_history, new_conv_state)
# Re-enable the input box
chat_input.update(interactive=True)
# Return everything needed
return final_history, final_conv_state
with gr.Column(scale=1):
gr.Markdown("### Examples")
with gr.Tab("Text Only"):
# For text examples, just submit them directly
def run_text_example(example_text, history, conv_state):
# Process the example directly
return handle_example_submission(example_text, [], history, conv_state)
text_examples = gr.Examples(
examples=[
["Tell me about Microsoft Azure cloud services."],
["What can you help me with today?"],
["Explain the difference between AI and machine learning."],
],
inputs=[gr.Textbox(visible=False)],
outputs=[chatbot, conversation_state],
fn=lambda text, h=chatbot, c=conversation_state: run_text_example(text, h, c),
label="Text Examples (Click to run the example)"
)
with gr.Tab("Text & Audio"):
# Function to handle loading both text and audio from URL and sending directly
def run_audio_example(example_text, example_audio_url, history, conv_state):
try:
# Download and process the audio from URL
print(f"Downloading audio from: {example_audio_url}")
response = requests.get(example_audio_url)
response.raise_for_status()
# Save to a temporary file
file_extension = os.path.splitext(example_audio_url)[1].lower()
if not file_extension:
file_extension = '.wav' # Default to .wav if no extension
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=file_extension)
temp_file.write(response.content)
temp_file.close()
print(f"Saved audio to temporary file: {temp_file.name}")
# Process the example directly
return handle_example_submission(example_text, [temp_file.name], history, conv_state)
except Exception as e:
print(f"Error processing audio example: {e}")
# If an error occurs, just add the text to history
history.append({"role": "user", "content": f"{example_text} (Error loading audio: {e})"})
return history, conv_state
audio_examples = gr.Examples(
examples=[
["Transcribe this audio clip", "https://diamondfan.github.io/audio_files/english.weekend.plan.wav"],
["What language is being spoken in this recording?", "https://www2.cs.uic.edu/~i101/SoundFiles/BabyElephantWalk60.wav"],
],
inputs=[
gr.Textbox(visible=False),
gr.Textbox(visible=False)
],
outputs=[chatbot, conversation_state],
fn=lambda text, url, h=chatbot, c=conversation_state: run_audio_example(text, url, h, c),
label="Audio Examples (Click to run the example)"
)
with gr.Tab("Text & Image"):
# Function to handle loading both text and image from URL and sending directly
def run_image_example(example_text, example_image_url, history, conv_state):
try:
# Download the image from URL
print(f"Downloading image from: {example_image_url}")
response = requests.get(example_image_url)
response.raise_for_status()
# Save to a temporary file
file_extension = os.path.splitext(example_image_url)[1].lower()
if not file_extension:
file_extension = '.jpg' # Default to .jpg if no extension
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=file_extension)
temp_file.write(response.content)
temp_file.close()
print(f"Saved image to temporary file: {temp_file.name}")
# Process the example directly
return handle_example_submission(example_text, [temp_file.name], history, conv_state)
except Exception as e:
print(f"Error processing image example: {e}")
# If an error occurs, just add the text to history
history.append({"role": "user", "content": f"{example_text} (Error loading image: {e})"})
return history, conv_state
image_examples = gr.Examples(
examples=[
["What's in this image?", "https://storage.googleapis.com/demo-image/dog.jpg"],
["Describe this chart", "https://matplotlib.org/stable/_images/sphx_glr_bar_stacked_001.png"],
],
inputs=[
gr.Textbox(visible=False),
gr.Textbox(visible=False)
],
outputs=[chatbot, conversation_state],
fn=lambda text, url, h=chatbot, c=conversation_state: run_image_example(text, url, h, c),
label="Image Examples (Click to run the example)"
)
gr.Markdown("### Instructions")
gr.Markdown("""
- Type a question or statement
- Upload images or audio files
- You can combine text with media files
- The model can analyze images and transcribe audio
- For best results with images, use JPG or PNG files
- For audio, use WAV, MP3, or FLAC files
""")
gr.Markdown("### Capabilities")
gr.Markdown("""
This chatbot can:
- Answer questions and provide explanations
- Describe and analyze images
- Transcribe and analyze audio content
- Process multiple inputs in the same message
- Maintain context throughout the conversation
""")
with gr.Accordion("Debug Info", open=False):
debug_output = gr.JSON(
label="Last API Request",
value={}
)
def update_debug(conversation_state):
"""Update debug output with the last payload that would be sent."""
if not conversation_state:
return {}
# Create a payload from the conversation
payload = {
"input_data": {
"input_string": conversation_state
}
}
# Remove base64 data to avoid cluttering the UI
sanitized_payload = json.loads(json.dumps(payload))
for item in sanitized_payload["input_data"]["input_string"]:
if "content" in item and isinstance(item["content"], list):
for content_item in item["content"]:
if "image_url" in content_item:
parts = content_item["image_url"]["url"].split(",")
if len(parts) > 1:
content_item["image_url"]["url"] = parts[0] + ",[BASE64_DATA_REMOVED]"
if "audio_url" in content_item:
parts = content_item["audio_url"]["url"].split(",")
if len(parts) > 1:
content_item["audio_url"]["url"] = parts[0] + ",[BASE64_DATA_REMOVED]"
return sanitized_payload
def enable_input():
"""Re-enable the input box after bot responds."""
return gr.MultimodalTextbox(interactive=True)
# Set up event handlers
msg_submit = chat_input.submit(
process_message, [chatbot, chat_input, conversation_state], [chatbot, chat_input, conversation_state], queue=False
)
msg_response = msg_submit.then(
bot_response, [chatbot, conversation_state], [chatbot, conversation_state], api_name="bot_response"
)
msg_response.then(enable_input, None, chat_input)
# btn_response.then(enable_input, None, chat_input)
# Update debug info
# msg_response.then(update_debug, conversation_state, debug_output)
# btn_response.then(update_debug, conversation_state, debug_output)
demo.launch(share=True, debug=True) |