File size: 6,682 Bytes
eb8427a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from collections import OrderedDict
from typing import Tuple, Union
import logging
import os

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn

from timm.models.layers import DropPath, trunc_normal_

from .registry import register_lang_encoder

logger = logging.getLogger(__name__)

class LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12):
        """Construct a layernorm module in the TF style (epsilon inside the square root).
        """
        super(LayerNorm, self).__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        pdtype = x.dtype
        x = x.float()
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.weight * x.to(pdtype) + self.bias


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self,
                 d_model: int,
                 n_head: int,
                 attn_mask: torch.Tensor = None,
                 drop_path: float = 0.0):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \
            if self.attn_mask is not None else None


        return self.attn(
            x, x, x,
            key_padding_mask=key_padding_mask,
            need_weights=False,
            attn_mask=self.attn_mask
        )[0]

    def forward(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
        x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask))
        x = x + self.drop_path(self.mlp(self.ln_2(x)))
        return x


class Transformer(nn.Module):
    def __init__(self,
                 context_length: int,
                 vocab_size: int,
                 width: int,
                 layers: int,
                 heads: int,
                 drop_path: float = 0.0,
                 autogressive: bool =True):
        super().__init__()

        self.token_embedding = nn.Embedding(vocab_size, width)

        self.context_length = context_length
        self.positional_embedding = nn.Parameter(
            torch.empty(self.context_length, width)
        )

        self.width = width
        self.layers = layers
        self.autogressive = autogressive
        attn_mask = self.build_attention_mask() if autogressive else None
        dpr = [x.item() for x in torch.linspace(0, drop_path, layers)]  # stochastic depth decay rule
        self.resblocks = nn.ModuleList(
            [
                ResidualAttentionBlock(width, heads, attn_mask, dpr[i])
                for i in range(layers)
            ]
        )

        self.ln_final = LayerNorm(width)

        trunc_normal_(self.positional_embedding, std=.02)
        # nn.init.normal_(self.token_embedding, std=.02)
        trunc_normal_(self.token_embedding.weight, std=.02)
        self.apply(self._init_weights)

    @property
    def dim_out(self):
        return self.width

    def build_attention_mask(self):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    def _init_weights(self, m):
        if isinstance(m, (nn.Linear, nn.Conv2d)):
            logger.info('=> init weight of Linear/Conv2d from trunc norm')
            trunc_normal_(m.weight, std=0.02)
            if m.bias is not None:
                logger.info('=> init bias of Linear/Conv2d to zeros')
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
            nn.init.constant_(m.bias, 0)

    def load_pretrained(self, pretrained='', pretrained_layers=[], verbose=True):
        if os.path.isfile(pretrained):
            pretrained_dict = torch.load(pretrained, map_location='cpu')
            logging.info(f'=> loading pretrained model {pretrained}')
            model_dict = self.state_dict()
            pretrained_dict = {
                k: v for k, v in pretrained_dict.items()
                if k in model_dict.keys()
            }
            need_init_state_dict = {}
            for k, v in pretrained_dict.items():
                need_init = (
                    k.split('.')[0] in pretrained_layers
                    or pretrained_layers[0] == '*'
                )
                if need_init:
                    if verbose:
                        logging.info(f'=> init {k} from {pretrained}')

                    need_init_state_dict[k] = v
            self.load_state_dict(need_init_state_dict, strict=False)


    @torch.jit.ignore
    def no_weight_decay(self):
        return {
            'positional_embedding',
            'token_embedding',
        }

    def forward(self, input_ids, attention_mask=None):
        key_padding_mask = (input_ids == 0) if not self.autogressive else None
        x = self.token_embedding(input_ids)  # [batch_size, n_ctx, d_model]
        x = x + self.positional_embedding
        x = x.permute(1, 0, 2)  # NLD -> LND
        for block in self.resblocks:
            x = block(x, key_padding_mask)
        x = x.permute(1, 0, 2)  # LND -> NLD

        x = self.ln_final(x)

        return {'last_hidden_state': x}


@register_lang_encoder
def lang_encoder(config_encoder, tokenizer, verbose, **kwargs):
    transformer = Transformer(
        context_length=config_encoder['CONTEXT_LENGTH'],
        vocab_size=tokenizer.vocab_size,
        width=config_encoder['WIDTH'],
        layers=config_encoder['LAYERS'],
        heads=config_encoder['HEADS'],
        autogressive=config_encoder.get('AUTOGRESSIVE', True)
    )

    if config_encoder['LOAD_PRETRAINED']:
        transformer.load_pretrained()

    return transformer