Spaces:
Runtime error
Runtime error
File size: 25,399 Bytes
eb8427a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
# --------------------------------------------------------
# FocalNets -- Focal Modulation Networks
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Jianwei Yang (jianwyan@microsoft.com)
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from torchvision import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
from timm.data.transforms import _pil_interp
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class FocalModulation(nn.Module):
def __init__(self, dim, focal_window, focal_level, focal_factor=2, bias=True, proj_drop=0.):
super().__init__()
self.dim = dim
self.focal_window = focal_window
self.focal_level = focal_level
self.focal_factor = focal_factor
self.f = nn.Linear(dim, 2*dim + (self.focal_level+1), bias=bias)
self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)
self.act = nn.GELU()
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.focal_layers = nn.ModuleList()
self.kernel_sizes = []
for k in range(self.focal_level):
kernel_size = self.focal_factor*k + self.focal_window
self.focal_layers.append(
nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1,
groups=dim, padding=kernel_size//2, bias=False),
nn.GELU(),
)
)
self.kernel_sizes.append(kernel_size)
def forward(self, x):
"""
Args:
x: input features with shape of (B, H, W, C)
"""
C = x.shape[-1]
# pre linear projection
x = self.f(x).permute(0, 3, 1, 2).contiguous()
q, ctx, self.gates = torch.split(x, (C, C, self.focal_level+1), 1)
# context aggreation
ctx_all = 0
for l in range(self.focal_level):
ctx = self.focal_layers[l](ctx)
ctx_all = ctx_all + ctx*self.gates[:, l:l+1]
ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
ctx_all = ctx_all + ctx_global*self.gates[:,self.focal_level:]
# focal modulation
self.modulator = self.h(ctx_all)
x_out = q*self.modulator
x_out = x_out.permute(0, 2, 3, 1).contiguous()
# post linear porjection
x_out = self.proj(x_out)
x_out = self.proj_drop(x_out)
return x_out
def extra_repr(self) -> str:
return f'dim={self.dim}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
flops += N * self.dim * (self.dim * 2 + (self.focal_level+1))
# focal convolution
for k in range(self.focal_level):
flops += N * (self.kernel_sizes[k]**2+1) * self.dim
# global gating
flops += N * 1 * self.dim
# self.linear
flops += N * self.dim * (self.dim + 1)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class FocalNetBlock(nn.Module):
r""" Focal Modulation Network Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
focal_level (int): Number of focal levels.
focal_window (int): Focal window size at first focal level
use_layerscale (bool): Whether use layerscale
layerscale_value (float): Initial layerscale value
use_postln (bool): Whether use layernorm after modulation
"""
def __init__(self, dim, input_resolution, mlp_ratio=4., drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
focal_level=1, focal_window=3,
use_layerscale=False, layerscale_value=1e-4,
use_postln=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.mlp_ratio = mlp_ratio
self.focal_window = focal_window
self.focal_level = focal_level
self.use_postln = use_postln
self.norm1 = norm_layer(dim)
self.modulation = FocalModulation(dim, proj_drop=drop, focal_window=focal_window, focal_level=self.focal_level)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.alpha = 3.0 if self.use_postln else 1.0
self.gamma_1 = 1.0
self.gamma_2 = 1.0
if use_layerscale:
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
self.H = None
self.W = None
def forward(self, x):
H, W = self.H, self.W
B, L, C = x.shape
shortcut = x
# Focal Modulation
if not self.use_postln:
x = self.norm1(x)
x = x.view(B, H, W, C)
x = self.modulation(x).view(B, H * W, C)
# FFN
x = shortcut*self.alpha + self.drop_path(self.gamma_1 * x)
if self.use_postln:
x = self.norm1(x)
if not self.use_postln:
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
else:
x = x*self.alpha + self.drop_path(self.gamma_2 * self.mlp(x))
x = self.norm2(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, " \
f"mlp_ratio={self.mlp_ratio}"
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# W-MSA/SW-MSA
flops += self.modulation.flops(H*W)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops
class BasicLayer(nn.Module):
""" A basic Focal Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
focal_level (int): Number of focal levels
focal_window (int): Focal window size at first focal level
use_layerscale (bool): Whether use layerscale
layerscale_value (float): Initial layerscale value
use_postln (bool): Whether use layernorm after modulation
"""
def __init__(self, dim, out_dim, input_resolution, depth,
mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm,
downsample=None, use_checkpoint=False,
focal_level=1, focal_window=1,
use_conv_embed=False,
use_layerscale=False, layerscale_value=1e-4, use_postln=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
FocalNetBlock(
dim=dim,
input_resolution=input_resolution,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
focal_level=focal_level,
focal_window=focal_window,
use_layerscale=use_layerscale,
layerscale_value=layerscale_value,
use_postln=use_postln,
)
for i in range(depth)])
if downsample is not None:
self.downsample = downsample(
img_size=input_resolution,
patch_size=2,
in_chans=dim,
embed_dim=out_dim,
use_conv_embed=use_conv_embed,
norm_layer=norm_layer,
is_stem=False
)
else:
self.downsample = None
def forward(self, x, H, W):
for blk in self.blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)
x, Ho, Wo = self.downsample(x)
else:
Ho, Wo = H, W
return x, Ho, Wo
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
def flops(self):
flops = 0
for blk in self.blocks:
flops += blk.flops()
if self.downsample is not None:
flops += self.downsample.flops()
return flops
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, use_conv_embed=False, norm_layer=None, is_stem=False):
super().__init__()
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
if use_conv_embed:
# if we choose to use conv embedding, then we treat the stem and non-stem differently
if is_stem:
kernel_size = 7; padding = 2; stride = 4
else:
kernel_size = 3; padding = 1; stride = 2
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x)
H, W = x.shape[2:]
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x, H, W
def flops(self):
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class FocalNet(nn.Module):
r""" Focal Modulation Networks (FocalNets)
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Focal Transformer layer.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
drop_rate (float): Dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1]
focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1]
use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, but we do not use it by default. Default: False
use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False
layerscale_value (float): Value for layer scale. Default: 1e-4
use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)
"""
def __init__(self,
img_size=224,
patch_size=4,
in_chans=3,
num_classes=1000,
embed_dim=96,
depths=[2, 2, 6, 2],
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
patch_norm=True,
use_checkpoint=False,
focal_levels=[2, 2, 2, 2],
focal_windows=[3, 3, 3, 3],
use_conv_embed=False,
use_layerscale=False,
layerscale_value=1e-4,
use_postln=False,
**kwargs):
super().__init__()
self.num_layers = len(depths)
embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]
self.num_classes = num_classes
self.embed_dim = embed_dim
self.patch_norm = patch_norm
self.num_features = embed_dim[-1]
self.mlp_ratio = mlp_ratio
# split image into patches using either non-overlapped embedding or overlapped embedding
self.patch_embed = PatchEmbed(
img_size=to_2tuple(img_size),
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim[0],
use_conv_embed=use_conv_embed,
norm_layer=norm_layer if self.patch_norm else None,
is_stem=True)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(dim=embed_dim[i_layer],
out_dim=embed_dim[i_layer+1] if (i_layer < self.num_layers - 1) else None,
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
focal_level=focal_levels[i_layer],
focal_window=focal_windows[i_layer],
use_conv_embed=use_conv_embed,
use_checkpoint=use_checkpoint,
use_layerscale=use_layerscale,
layerscale_value=layerscale_value,
use_postln=use_postln,
)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.dim_out = self.num_features
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {''}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {''}
def forward_features(self, x):
x, H, W = self.patch_embed(x)
x = self.pos_drop(x)
for layer in self.layers:
x, H, W = layer(x, H, W)
x = self.norm(x) # B L C
x = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.flatten(x, 1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def flops(self):
flops = 0
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
flops += layer.flops()
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
flops += self.num_features * self.num_classes
return flops
def build_transforms(img_size, center_crop=False):
t = []
if center_crop:
size = int((256 / 224) * img_size)
t.append(
transforms.Resize(size, interpolation=_pil_interp('bicubic'))
)
t.append(
transforms.CenterCrop(img_size)
)
else:
t.append(
transforms.Resize(img_size, interpolation=_pil_interp('bicubic'))
)
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)
def build_transforms4display(img_size, center_crop=False):
t = []
if center_crop:
size = int((256 / 224) * img_size)
t.append(
transforms.Resize(size, interpolation=_pil_interp('bicubic'))
)
t.append(
transforms.CenterCrop(img_size)
)
else:
t.append(
transforms.Resize(img_size, interpolation=_pil_interp('bicubic'))
)
t.append(transforms.ToTensor())
return transforms.Compose(t)
model_urls = {
"focalnet_tiny_srf": "",
"focalnet_small_srf": "",
"focalnet_base_srf": "",
"focalnet_tiny_lrf": "",
"focalnet_small_lrf": "",
"focalnet_base_lrf": "",
}
@register_model
def focalnet_tiny_srf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
if pretrained:
url = model_urls['focalnet_tiny_srf']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def focalnet_small_srf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
if pretrained:
url = model_urls['focalnet_small_srf']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
@register_model
def focalnet_base_srf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
if pretrained:
url = model_urls['focalnet_base_srf']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
@register_model
def focalnet_tiny_lrf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
if pretrained:
url = model_urls['focalnet_tiny_lrf']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def focalnet_small_lrf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
if pretrained:
url = model_urls['focalnet_small_lrf']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
@register_model
def focalnet_base_lrf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs)
if pretrained:
url = model_urls['focalnet_base_lrf']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
@register_model
def focalnet_giant_lrf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 42, 2], embed_dim=512, focal_levels=[3, 3, 3, 3], **kwargs)
if pretrained:
url = model_urls['focalnet_giant_lrf']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
@register_model
def focalnet_tiny_iso_16(pretrained=False, **kwargs):
model = FocalNet(depths=[12], patch_size=16, embed_dim=192, focal_levels=[3], focal_windows=[3], **kwargs)
if pretrained:
url = model_urls['focalnet_tiny_iso_16']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def focalnet_small_iso_16(pretrained=False, **kwargs):
model = FocalNet(depths=[12], patch_size=16, embed_dim=384, focal_levels=[3], focal_windows=[3], **kwargs)
if pretrained:
url = model_urls['focalnet_small_iso_16']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
@register_model
def focalnet_base_iso_16(pretrained=False, **kwargs):
model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], use_layerscale=True, use_postln=True, **kwargs)
if pretrained:
url = model_urls['focalnet_base_iso_16']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
if __name__ == '__main__':
img_size = 224
x = torch.rand(16, 3, img_size, img_size).cuda()
# model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96)
# model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], focal_factors=[2])
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3]).cuda()
print(model); model(x)
flops = model.flops()
print(f"number of GFLOPs: {flops / 1e9}")
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"number of params: {n_parameters}")
|