Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 6,021 Bytes
			
			| db6a3b7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | # Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
from ...modules.sparse import SparseTensor
from easydict import EasyDict as edict
from .utils_cube import *
try:
    from .flexicube import FlexiCubes
except:
    print("Please install kaolin and diso to use the mesh extractor.")
class MeshExtractResult:
    def __init__(self,
        vertices,
        faces,
        vertex_attrs=None,
        res=64
    ):
        self.vertices = vertices
        self.faces = faces.long()
        self.vertex_attrs = vertex_attrs
        self.face_normal = self.comput_face_normals(vertices, faces)
        self.res = res
        self.success = (vertices.shape[0] != 0 and faces.shape[0] != 0)
        # training only
        self.tsdf_v = None
        self.tsdf_s = None
        self.reg_loss = None
        
    def comput_face_normals(self, verts, faces):
        i0 = faces[..., 0].long()
        i1 = faces[..., 1].long()
        i2 = faces[..., 2].long()
        v0 = verts[i0, :]
        v1 = verts[i1, :]
        v2 = verts[i2, :]
        face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
        face_normals = torch.nn.functional.normalize(face_normals, dim=1)
        # print(face_normals.min(), face_normals.max(), face_normals.shape)
        return face_normals[:, None, :].repeat(1, 3, 1)
                
    def comput_v_normals(self, verts, faces):
        i0 = faces[..., 0].long()
        i1 = faces[..., 1].long()
        i2 = faces[..., 2].long()
        v0 = verts[i0, :]
        v1 = verts[i1, :]
        v2 = verts[i2, :]
        face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
        v_normals = torch.zeros_like(verts)
        v_normals.scatter_add_(0, i0[..., None].repeat(1, 3), face_normals)
        v_normals.scatter_add_(0, i1[..., None].repeat(1, 3), face_normals)
        v_normals.scatter_add_(0, i2[..., None].repeat(1, 3), face_normals)
        v_normals = torch.nn.functional.normalize(v_normals, dim=1)
        return v_normals   
class SparseFeatures2Mesh:
    def __init__(self, device="cuda", res=64, use_color=True):
        '''
        a model to generate a mesh from sparse features structures using flexicube
        '''
        super().__init__()
        self.device=device
        self.res = res
        self.mesh_extractor = FlexiCubes(device=device)
        self.sdf_bias = -1.0 / res
        verts, cube = construct_dense_grid(self.res, self.device)
        self.reg_c = cube.to(self.device)
        self.reg_v = verts.to(self.device)
        self.use_color = use_color
        self._calc_layout()
    
    def _calc_layout(self):
        LAYOUTS = {
            'sdf': {'shape': (8, 1), 'size': 8},
            'deform': {'shape': (8, 3), 'size': 8 * 3},
            'weights': {'shape': (21,), 'size': 21}
        }
        if self.use_color:
            '''
            6 channel color including normal map
            '''
            LAYOUTS['color'] = {'shape': (8, 6,), 'size': 8 * 6}
        self.layouts = edict(LAYOUTS)
        start = 0
        for k, v in self.layouts.items():
            v['range'] = (start, start + v['size'])
            start += v['size']
        self.feats_channels = start
        
    def get_layout(self, feats : torch.Tensor, name : str):
        if name not in self.layouts:
            return None
        return feats[:, self.layouts[name]['range'][0]:self.layouts[name]['range'][1]].reshape(-1, *self.layouts[name]['shape'])
    
    def __call__(self, cubefeats : SparseTensor, training=False):
        """
        Generates a mesh based on the specified sparse voxel structures.
        Args:
            cube_attrs [Nx21] : Sparse Tensor attrs about cube weights
            verts_attrs [Nx10] : [0:1] SDF [1:4] deform [4:7] color [7:10] normal 
        Returns:
            return the success tag and ni you loss, 
        """
        # add sdf bias to verts_attrs
        coords = cubefeats.coords[:, 1:]
        feats = cubefeats.feats
        
        sdf, deform, color, weights = [self.get_layout(feats, name) for name in ['sdf', 'deform', 'color', 'weights']]
        sdf += self.sdf_bias
        v_attrs = [sdf, deform, color] if self.use_color else [sdf, deform]
        v_pos, v_attrs, reg_loss = sparse_cube2verts(coords, torch.cat(v_attrs, dim=-1), training=training)
        v_attrs_d = get_dense_attrs(v_pos, v_attrs, res=self.res+1, sdf_init=True)
        weights_d = get_dense_attrs(coords, weights, res=self.res, sdf_init=False)
        if self.use_color:
            sdf_d, deform_d, colors_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4], v_attrs_d[..., 4:]
        else:
            sdf_d, deform_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4]
            colors_d = None
            
        x_nx3 = get_defomed_verts(self.reg_v, deform_d, self.res)
        
        vertices, faces, L_dev, colors = self.mesh_extractor(
            voxelgrid_vertices=x_nx3,
            scalar_field=sdf_d,
            cube_idx=self.reg_c,
            resolution=self.res,
            beta=weights_d[:, :12],
            alpha=weights_d[:, 12:20],
            gamma_f=weights_d[:, 20],
            voxelgrid_colors=colors_d,
            training=training)
        
        mesh = MeshExtractResult(vertices=vertices, faces=faces, vertex_attrs=colors, res=self.res)
        if training:
            if mesh.success:
                reg_loss += L_dev.mean() * 0.5
            reg_loss += (weights[:,:20]).abs().mean() * 0.2
            mesh.reg_loss = reg_loss
            mesh.tsdf_v = get_defomed_verts(v_pos, v_attrs[:, 1:4], self.res)
            mesh.tsdf_s = v_attrs[:, 0]
        return mesh
 | 
