File size: 16,960 Bytes
acc4ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "0ed6aab1",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "# SQLite example\n",
    "\n",
    "This example showcases hooking up an LLM to answer questions over a database."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b2f66479",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "This uses the example Chinook database.\n",
    "To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "d0e27d88",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "from langchain import OpenAI, SQLDatabase, SQLDatabaseChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "72ede462",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "db = SQLDatabase.from_uri(\"sqlite:///../../../../notebooks/Chinook.db\")\n",
    "llm = OpenAI(temperature=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3d1e692e",
   "metadata": {},
   "source": [
    "**NOTE:** For data-sensitive projects, you can specify `return_direct=True` in the `SQLDatabaseChain` initialization to directly return the output of the SQL query without any additional formatting. This prevents the LLM from seeing any contents within the database. Note, however, the LLM still has access to the database scheme (i.e. dialect, table and key names) by default."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "a8fc8f23",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "15ff81df",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many employees are there? \n",
      "SQLQuery:"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/harrisonchase/workplace/langchain/langchain/sql_database.py:120: SAWarning: Dialect sqlite+pysqlite does *not* support Decimal objects natively, and SQLAlchemy must convert from floating point - rounding errors and other issues may occur. Please consider storing Decimal numbers as strings or integers on this platform for lossless storage.\n",
      "  sample_rows = connection.execute(command)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32;1m\u001b[1;3m SELECT COUNT(*) FROM Employee;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(8,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3m There are 8 employees.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "' There are 8 employees.'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_chain.run(\"How many employees are there?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aad2cba6",
   "metadata": {},
   "source": [
    "## Customize Prompt\n",
    "You can also customize the prompt that is used. Here is an example prompting it to understand that foobar is the same as the Employee table"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "8ca7bafb",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts.prompt import PromptTemplate\n",
    "\n",
    "_DEFAULT_TEMPLATE = \"\"\"Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.\n",
    "Use the following format:\n",
    "\n",
    "Question: \"Question here\"\n",
    "SQLQuery: \"SQL Query to run\"\n",
    "SQLResult: \"Result of the SQLQuery\"\n",
    "Answer: \"Final answer here\"\n",
    "\n",
    "Only use the following tables:\n",
    "\n",
    "{table_info}\n",
    "\n",
    "If someone asks for the table foobar, they really mean the employee table.\n",
    "\n",
    "Question: {input}\"\"\"\n",
    "PROMPT = PromptTemplate(\n",
    "    input_variables=[\"input\", \"table_info\", \"dialect\"], template=_DEFAULT_TEMPLATE\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ec47a2bf",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain(llm=llm, database=db, prompt=PROMPT, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "ebb0674e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many employees are there in the foobar table? \n",
      "SQLQuery:\u001b[32;1m\u001b[1;3m SELECT COUNT(*) FROM Employee;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(8,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3m There are 8 employees in the foobar table.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "' There are 8 employees in the foobar table.'"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_chain.run(\"How many employees are there in the foobar table?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "88d8b969",
   "metadata": {},
   "source": [
    "## Return Intermediate Steps\n",
    "\n",
    "You can also return the intermediate steps of the SQLDatabaseChain. This allows you to access the SQL statement that was generated, as well as the result of running that against the SQL Database."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "38559487",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain(llm=llm, database=db, prompt=PROMPT, verbose=True, return_intermediate_steps=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "78b6af4d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many employees are there in the foobar table? \n",
      "SQLQuery:\u001b[32;1m\u001b[1;3m SELECT COUNT(*) FROM Employee;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(8,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3m There are 8 employees in the foobar table.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[' SELECT COUNT(*) FROM Employee;', '[(8,)]']"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "result = db_chain(\"How many employees are there in the foobar table?\")\n",
    "result[\"intermediate_steps\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b408f800",
   "metadata": {},
   "source": [
    "## Choosing how to limit the number of rows returned\n",
    "If you are querying for several rows of a table you can select the maximum number of results you want to get by using the 'top_k' parameter (default is 10). This is useful for avoiding query results that exceed the prompt max length or consume tokens unnecessarily."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "6adaa799",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True, top_k=3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "edfc8a8e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "What are some example tracks by composer Johann Sebastian Bach? \n",
      "SQLQuery:\u001b[32;1m\u001b[1;3m SELECT Name, Composer FROM Track WHERE Composer LIKE '%Johann Sebastian Bach%' LIMIT 3;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace', 'Johann Sebastian Bach'), ('Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria', 'Johann Sebastian Bach'), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude', 'Johann Sebastian Bach')]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3m Some example tracks by composer Johann Sebastian Bach are 'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace', 'Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria', and 'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude'.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "' Some example tracks by composer Johann Sebastian Bach are \\'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace\\', \\'Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria\\', and \\'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude\\'.'"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_chain.run(\"What are some example tracks by composer Johann Sebastian Bach?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bcc5e936",
   "metadata": {},
   "source": [
    "## Adding example rows from each table\n",
    "Sometimes, the format of the data is not obvious and it is optimal to include a sample of rows from the tables in the prompt to allow the LLM to understand the data before providing a final query. Here we will use this feature to let the LLM know that artists are saved with their full names by providing two rows from the `Track` table."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "9a22ee47",
   "metadata": {},
   "outputs": [],
   "source": [
    "db = SQLDatabase.from_uri(\n",
    "    \"sqlite:///../../../../notebooks/Chinook.db\",\n",
    "    include_tables=['Track'], # we include only one table to save tokens in the prompt :)\n",
    "    sample_rows_in_table_info=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "952c0b4d",
   "metadata": {},
   "source": [
    "The sample rows are added to the prompt after each corresponding table's column information:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "9de86267",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "CREATE TABLE \"Track\" (\n",
      "\t\"TrackId\" INTEGER NOT NULL, \n",
      "\t\"Name\" NVARCHAR(200) NOT NULL, \n",
      "\t\"AlbumId\" INTEGER, \n",
      "\t\"MediaTypeId\" INTEGER NOT NULL, \n",
      "\t\"GenreId\" INTEGER, \n",
      "\t\"Composer\" NVARCHAR(220), \n",
      "\t\"Milliseconds\" INTEGER NOT NULL, \n",
      "\t\"Bytes\" INTEGER, \n",
      "\t\"UnitPrice\" NUMERIC(10, 2) NOT NULL, \n",
      "\tPRIMARY KEY (\"TrackId\"), \n",
      "\tFOREIGN KEY(\"MediaTypeId\") REFERENCES \"MediaType\" (\"MediaTypeId\"), \n",
      "\tFOREIGN KEY(\"GenreId\") REFERENCES \"Genre\" (\"GenreId\"), \n",
      "\tFOREIGN KEY(\"AlbumId\") REFERENCES \"Album\" (\"AlbumId\")\n",
      ")\n",
      "\n",
      "SELECT * FROM 'Track' LIMIT 2;\n",
      "TrackId Name AlbumId MediaTypeId GenreId Composer Milliseconds Bytes UnitPrice\n",
      "1 For Those About To Rock (We Salute You) 1 1 1 Angus Young, Malcolm Young, Brian Johnson 343719 11170334 0.99\n",
      "2 Balls to the Wall 2 2 1 None 342562 5510424 0.99\n"
     ]
    }
   ],
   "source": [
    "print(db.table_info)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "bcb7a489",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "81e05d82",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "What are some example tracks by Bach? \n",
      "SQLQuery:\u001b[32;1m\u001b[1;3m SELECT Name FROM Track WHERE Composer LIKE '%Bach%' LIMIT 5;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[('American Woman',), ('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace',), ('Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria',), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude',), ('Toccata and Fugue in D Minor, BWV 565: I. Toccata',)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3m Some example tracks by Bach are 'American Woman', 'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace', 'Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria', 'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude', and 'Toccata and Fugue in D Minor, BWV 565: I. Toccata'.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "' Some example tracks by Bach are \\'American Woman\\', \\'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace\\', \\'Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria\\', \\'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude\\', and \\'Toccata and Fugue in D Minor, BWV 565: I. Toccata\\'.'"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_chain.run(\"What are some example tracks by Bach?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c12ae15a",
   "metadata": {},
   "source": [
    "## SQLDatabaseSequentialChain\n",
    "\n",
    "Chain for querying SQL database that is a sequential chain.\n",
    "\n",
    "The chain is as follows:\n",
    "\n",
    "    1. Based on the query, determine which tables to use.\n",
    "    2. Based on those tables, call the normal SQL database chain.\n",
    "\n",
    "This is useful in cases where the number of tables in the database is large."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "e59a4740",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import SQLDatabaseSequentialChain\n",
    "db = SQLDatabase.from_uri(\"sqlite:///../../../../notebooks/Chinook.db\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "58bb49b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "chain = SQLDatabaseSequentialChain.from_llm(llm, db, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "95017b1a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseSequentialChain chain...\u001b[0m\n",
      "Table names to use:\n",
      "\u001b[33;1m\u001b[1;3m['Customer', 'Employee']\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many employees are also customers? \n",
      "SQLQuery:\u001b[32;1m\u001b[1;3m SELECT COUNT(*) FROM Employee INNER JOIN Customer ON Employee.EmployeeId = Customer.SupportRepId;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(59,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3m 59 employees are also customers.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "' 59 employees are also customers.'"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain.run(\"How many employees are also customers?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5eb39db6",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "@webio": {
   "lastCommId": null,
   "lastKernelId": null
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}