File size: 20,692 Bytes
acc4ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "bf038596",
   "metadata": {},
   "source": [
    "# Example Selectors\n",
    "If you have a large number of examples, you may need to select which ones to include in the prompt. The ExampleSelector is the class responsible for doing so. The base interface is defined as below.\n",
    "\n",
    "```python\n",
    "class BaseExampleSelector(ABC):\n",
    "    \"\"\"Interface for selecting examples to include in prompts.\"\"\"\n",
    "\n",
    "    @abstractmethod\n",
    "    def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:\n",
    "        \"\"\"Select which examples to use based on the inputs.\"\"\"\n",
    "\n",
    "```\n",
    "\n",
    "The only method it needs to expose is a `select_examples` method. This takes in the input variables and then returns a list of examples. It is up to each specific implementation as to how those examples are selected. Let's take a look at some below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "8244ff60",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts import FewShotPromptTemplate"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "861a4d1f",
   "metadata": {},
   "source": [
    "## LengthBased ExampleSelector\n",
    "\n",
    "This ExampleSelector selects which examples to use based on length. This is useful when you are worried about constructing a prompt that will go over the length of the context window. For longer inputs, it will select fewer examples to include, while for shorter inputs it will select more.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "7c469c95",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts import PromptTemplate\n",
    "from langchain.prompts.example_selector import LengthBasedExampleSelector"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "0ec6d950",
   "metadata": {},
   "outputs": [],
   "source": [
    "# These are a lot of examples of a pretend task of creating antonyms.\n",
    "examples = [\n",
    "    {\"input\": \"happy\", \"output\": \"sad\"},\n",
    "    {\"input\": \"tall\", \"output\": \"short\"},\n",
    "    {\"input\": \"energetic\", \"output\": \"lethargic\"},\n",
    "    {\"input\": \"sunny\", \"output\": \"gloomy\"},\n",
    "    {\"input\": \"windy\", \"output\": \"calm\"},\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "207e55f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "example_prompt = PromptTemplate(\n",
    "    input_variables=[\"input\", \"output\"],\n",
    "    template=\"Input: {input}\\nOutput: {output}\",\n",
    ")\n",
    "example_selector = LengthBasedExampleSelector(\n",
    "    # These are the examples it has available to choose from.\n",
    "    examples=examples, \n",
    "    # This is the PromptTemplate being used to format the examples.\n",
    "    example_prompt=example_prompt, \n",
    "    # This is the maximum length that the formatted examples should be.\n",
    "    # Length is measured by the get_text_length function below.\n",
    "    max_length=25,\n",
    "    # This is the function used to get the length of a string, which is used\n",
    "    # to determine which examples to include. It is commented out because\n",
    "    # it is provided as a default value if none is specified.\n",
    "    # get_text_length: Callable[[str], int] = lambda x: len(re.split(\"\\n| \", x))\n",
    ")\n",
    "dynamic_prompt = FewShotPromptTemplate(\n",
    "    # We provide an ExampleSelector instead of examples.\n",
    "    example_selector=example_selector,\n",
    "    example_prompt=example_prompt,\n",
    "    prefix=\"Give the antonym of every input\",\n",
    "    suffix=\"Input: {adjective}\\nOutput:\", \n",
    "    input_variables=[\"adjective\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "d00b4385",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the antonym of every input\n",
      "\n",
      "Input: happy\n",
      "Output: sad\n",
      "\n",
      "Input: tall\n",
      "Output: short\n",
      "\n",
      "Input: energetic\n",
      "Output: lethargic\n",
      "\n",
      "Input: sunny\n",
      "Output: gloomy\n",
      "\n",
      "Input: windy\n",
      "Output: calm\n",
      "\n",
      "Input: big\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# An example with small input, so it selects all examples.\n",
    "print(dynamic_prompt.format(adjective=\"big\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "878bcde9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the antonym of every input\n",
      "\n",
      "Input: happy\n",
      "Output: sad\n",
      "\n",
      "Input: big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# An example with long input, so it selects only one example.\n",
    "long_string = \"big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else\"\n",
    "print(dynamic_prompt.format(adjective=long_string))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "e4bebcd9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the antonym of every input\n",
      "\n",
      "Input: happy\n",
      "Output: sad\n",
      "\n",
      "Input: tall\n",
      "Output: short\n",
      "\n",
      "Input: energetic\n",
      "Output: lethargic\n",
      "\n",
      "Input: sunny\n",
      "Output: gloomy\n",
      "\n",
      "Input: windy\n",
      "Output: calm\n",
      "\n",
      "Input: big\n",
      "Output: small\n",
      "\n",
      "Input: enthusiastic\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# You can add an example to an example selector as well.\n",
    "new_example = {\"input\": \"big\", \"output\": \"small\"}\n",
    "dynamic_prompt.example_selector.add_example(new_example)\n",
    "print(dynamic_prompt.format(adjective=\"enthusiastic\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2d007b0a",
   "metadata": {},
   "source": [
    "## Similarity ExampleSelector\n",
    "\n",
    "The SemanticSimilarityExampleSelector selects examples based on which examples are most similar to the inputs. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "241bfe80",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts.example_selector import SemanticSimilarityExampleSelector\n",
    "from langchain.vectorstores import Chroma\n",
    "from langchain.embeddings import OpenAIEmbeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "50d0a701",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running Chroma using direct local API.\n",
      "Using DuckDB in-memory for database. Data will be transient.\n"
     ]
    }
   ],
   "source": [
    "example_selector = SemanticSimilarityExampleSelector.from_examples(\n",
    "    # This is the list of examples available to select from.\n",
    "    examples, \n",
    "    # This is the embedding class used to produce embeddings which are used to measure semantic similarity.\n",
    "    OpenAIEmbeddings(), \n",
    "    # This is the VectorStore class that is used to store the embeddings and do a similarity search over.\n",
    "    Chroma, \n",
    "    # This is the number of examples to produce.\n",
    "    k=1\n",
    ")\n",
    "similar_prompt = FewShotPromptTemplate(\n",
    "    # We provide an ExampleSelector instead of examples.\n",
    "    example_selector=example_selector,\n",
    "    example_prompt=example_prompt,\n",
    "    prefix=\"Give the antonym of every input\",\n",
    "    suffix=\"Input: {adjective}\\nOutput:\", \n",
    "    input_variables=[\"adjective\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "4c8fdf45",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the antonym of every input\n",
      "\n",
      "Input: happy\n",
      "Output: sad\n",
      "\n",
      "Input: worried\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# Input is a feeling, so should select the happy/sad example\n",
    "print(similar_prompt.format(adjective=\"worried\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "829af21a",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the antonym of every input\n",
      "\n",
      "Input: happy\n",
      "Output: sad\n",
      "\n",
      "Input: fat\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# Input is a measurement, so should select the tall/short example\n",
    "print(similar_prompt.format(adjective=\"fat\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "3c16fe23",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the antonym of every input\n",
      "\n",
      "Input: happy\n",
      "Output: sad\n",
      "\n",
      "Input: joyful\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# You can add new examples to the SemanticSimilarityExampleSelector as well\n",
    "similar_prompt.example_selector.add_example({\"input\": \"enthusiastic\", \"output\": \"apathetic\"})\n",
    "print(similar_prompt.format(adjective=\"joyful\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bc35afd0",
   "metadata": {},
   "source": [
    "## Maximal Marginal Relevance ExampleSelector\n",
    "\n",
    "The MaxMarginalRelevanceExampleSelector selects examples based on a combination of which examples are most similar to the inputs, while also optimizing for diversity. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs, and then iteratively adding them while penalizing them for closeness to already selected examples.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "ac95c968",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector\n",
    "from langchain.vectorstores import FAISS"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "db579bea",
   "metadata": {},
   "outputs": [],
   "source": [
    "example_selector = MaxMarginalRelevanceExampleSelector.from_examples(\n",
    "    # This is the list of examples available to select from.\n",
    "    examples, \n",
    "    # This is the embedding class used to produce embeddings which are used to measure semantic similarity.\n",
    "    OpenAIEmbeddings(), \n",
    "    # This is the VectorStore class that is used to store the embeddings and do a similarity search over.\n",
    "    FAISS, \n",
    "    # This is the number of examples to produce.\n",
    "    k=2\n",
    ")\n",
    "mmr_prompt = FewShotPromptTemplate(\n",
    "    # We provide an ExampleSelector instead of examples.\n",
    "    example_selector=example_selector,\n",
    "    example_prompt=example_prompt,\n",
    "    prefix=\"Give the antonym of every input\",\n",
    "    suffix=\"Input: {adjective}\\nOutput:\", \n",
    "    input_variables=[\"adjective\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "cd76e344",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the antonym of every input\n",
      "\n",
      "Input: happy\n",
      "Output: sad\n",
      "\n",
      "Input: windy\n",
      "Output: calm\n",
      "\n",
      "Input: worried\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# Input is a feeling, so should select the happy/sad example as the first one\n",
    "print(mmr_prompt.format(adjective=\"worried\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "cf82956b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the antonym of every input\n",
      "\n",
      "Input: enthusiastic\n",
      "Output: apathetic\n",
      "\n",
      "Input: worried\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# Let's compare this to what we would just get if we went solely off of similarity\n",
    "similar_prompt.example_selector.k = 2\n",
    "print(similar_prompt.format(adjective=\"worried\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4aaeed2f",
   "metadata": {},
   "source": [
    "## NGram Overlap ExampleSelector\n",
    "\n",
    "The NGramOverlapExampleSelector selects and orders examples based on which examples are most similar to the input, according to an ngram overlap score. The ngram overlap score is a float between 0.0 and 1.0, inclusive. \n",
    "\n",
    "The selector allows for a threshold score to be set. Examples with an ngram overlap score less than or equal to the threshold are excluded. The threshold is set to -1.0, by default, so will not exclude any examples, only reorder them. Setting the threshold to 0.0 will exclude examples that have no ngram overlaps with the input.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "9cbc0acc",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts import PromptTemplate\n",
    "from langchain.prompts.example_selector.ngram_overlap import NGramOverlapExampleSelector"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "4f318f4b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# These are examples of a fictional translation task.\n",
    "examples = [\n",
    "    {\"input\": \"See Spot run.\", \"output\": \"Ver correr a Spot.\"},\n",
    "    {\"input\": \"My dog barks.\", \"output\": \"Mi perro ladra.\"},\n",
    "    {\"input\": \"Spot can run.\", \"output\": \"Spot puede correr.\"},\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "bf75e0fe",
   "metadata": {},
   "outputs": [],
   "source": [
    "example_prompt = PromptTemplate(\n",
    "    input_variables=[\"input\", \"output\"],\n",
    "    template=\"Input: {input}\\nOutput: {output}\",\n",
    ")\n",
    "example_selector = NGramOverlapExampleSelector(\n",
    "    # These are the examples it has available to choose from.\n",
    "    examples=examples, \n",
    "    # This is the PromptTemplate being used to format the examples.\n",
    "    example_prompt=example_prompt, \n",
    "    # This is the threshold, at which selector stops.\n",
    "    # It is set to -1.0 by default.\n",
    "    threshold=-1.0,\n",
    "    # For negative threshold:\n",
    "    # Selector sorts examples by ngram overlap score, and excludes none.\n",
    "    # For threshold greater than 1.0:\n",
    "    # Selector excludes all examples, and returns an empty list.\n",
    "    # For threshold equal to 0.0:\n",
    "    # Selector sorts examples by ngram overlap score,\n",
    "    # and excludes those with no ngram overlap with input.\n",
    ")\n",
    "dynamic_prompt = FewShotPromptTemplate(\n",
    "    # We provide an ExampleSelector instead of examples.\n",
    "    example_selector=example_selector,\n",
    "    example_prompt=example_prompt,\n",
    "    prefix=\"Give the Spanish translation of every input\",\n",
    "    suffix=\"Input: {sentence}\\nOutput:\", \n",
    "    input_variables=[\"sentence\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "83fb218a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the Spanish translation of every input\n",
      "\n",
      "Input: Spot can run.\n",
      "Output: Spot puede correr.\n",
      "\n",
      "Input: See Spot run.\n",
      "Output: Ver correr a Spot.\n",
      "\n",
      "Input: My dog barks.\n",
      "Output: Mi perro ladra.\n",
      "\n",
      "Input: Spot can run fast.\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# An example input with large ngram overlap with \"Spot can run.\"\n",
    "# and no overlap with \"My dog barks.\"\n",
    "print(dynamic_prompt.format(sentence=\"Spot can run fast.\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "485f5307",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the Spanish translation of every input\n",
      "\n",
      "Input: Spot can run.\n",
      "Output: Spot puede correr.\n",
      "\n",
      "Input: See Spot run.\n",
      "Output: Ver correr a Spot.\n",
      "\n",
      "Input: Spot plays fetch.\n",
      "Output: Spot juega a buscar.\n",
      "\n",
      "Input: My dog barks.\n",
      "Output: Mi perro ladra.\n",
      "\n",
      "Input: Spot can run fast.\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# You can add examples to NGramOverlapExampleSelector as well.\n",
    "new_example = {\"input\": \"Spot plays fetch.\", \"output\": \"Spot juega a buscar.\"}\n",
    "\n",
    "example_selector.add_example(new_example)\n",
    "print(dynamic_prompt.format(sentence=\"Spot can run fast.\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "606ce697",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the Spanish translation of every input\n",
      "\n",
      "Input: Spot can run.\n",
      "Output: Spot puede correr.\n",
      "\n",
      "Input: See Spot run.\n",
      "Output: Ver correr a Spot.\n",
      "\n",
      "Input: Spot plays fetch.\n",
      "Output: Spot juega a buscar.\n",
      "\n",
      "Input: Spot can run fast.\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# You can set a threshold at which examples are excluded.\n",
    "# For example, setting threshold equal to 0.0\n",
    "# excludes examples with no ngram overlaps with input.\n",
    "# Since \"My dog barks.\" has no ngram overlaps with \"Spot can run fast.\"\n",
    "# it is excluded.\n",
    "example_selector.threshold=0.0\n",
    "print(dynamic_prompt.format(sentence=\"Spot can run fast.\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 87,
   "id": "7f8d72f7",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the Spanish translation of every input\n",
      "\n",
      "Input: Spot can run.\n",
      "Output: Spot puede correr.\n",
      "\n",
      "Input: Spot plays fetch.\n",
      "Output: Spot juega a buscar.\n",
      "\n",
      "Input: Spot can play fetch.\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# Setting small nonzero threshold\n",
    "example_selector.threshold=0.09\n",
    "print(dynamic_prompt.format(sentence=\"Spot can play fetch.\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 88,
   "id": "09633aa8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Give the Spanish translation of every input\n",
      "\n",
      "Input: Spot can play fetch.\n",
      "Output:\n"
     ]
    }
   ],
   "source": [
    "# Setting threshold greater than 1.0\n",
    "example_selector.threshold=1.0+1e-9\n",
    "print(dynamic_prompt.format(sentence=\"Spot can play fetch.\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "39f30097",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}