Spaces:
Sleeping
Sleeping
File size: 40,349 Bytes
b762e56 86e64e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
# Copyright 2020 The Magenta Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Defines the Material Design Icons Problem."""
import io
import numpy as np
import re
from PIL import Image
from itertools import zip_longest
from skimage import draw
SVG_PREFIX_BIG = ('<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="'
'http://www.w3.org/1999/xlink" width="256px" height="256px"'
' style="-ms-transform: rotate(360deg); -webkit-transform:'
' rotate(360deg); transform: rotate(360deg);" '
'preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 30">')
PATH_PREFIX_1 = '<path d="'
PATH_POSFIX_1 = '" fill="currentColor"/>'
SVG_POSFIX = '</svg>'
NUM_ARGS = {'v': 1, 'V': 1, 'h': 1, 'H': 1, 'a': 7, 'A': 7, 'l': 2, 'L': 2,
't': 2, 'T': 2, 'c': 6, 'C': 6, 'm': 2, 'M': 2, 's': 4, 'S': 4,
'q': 4, 'Q': 4, 'z': 0}
# in order of arg complexity, with absolutes clustered
# recall we don't handle all commands (see docstring)
CMDS_LIST = 'zHVMLTSQCAhvmltsqca' # was zhvmltsqcaHVMLTSQCA
CMD_MAPPING = {cmd: i for i, cmd in enumerate(CMDS_LIST)}
FEATURE_DIM = 10
MAX_SEQ_LEN = 120
# Manually Change Max Sequence
def change_max_seq_len(param):
global MAX_SEQ_LEN
MAX_SEQ_LEN = param
return MAX_SEQ_LEN
############################### GENERAL UTILS #################################
def grouper(iterable, batch_size, fill_value=None):
"""Helper method for returning batches of size batch_size of a dataset."""
# grouper('ABCDEF', 3) -> 'ABC', 'DEF'
args = [iter(iterable)] * batch_size
return zip_longest(*args, fillvalue=fill_value)
def _map_uni_to_alphanum(uni):
"""Maps [0-9 A-Z a-z] to numbers 0-62."""
if 48 <= uni <= 57:
return uni - 48
elif 65 <= uni <= 90:
return uni - 65 + 10
return uni - 97 + 36
def _map_uni_to_alpha(uni):
"""Maps [A-Z a-z] to numbers 0-52."""
if 65 <= uni <= 90:
return uni - 65
return uni - 97 + 26
############# UTILS FOR CONVERTING SFD/SPLINESETS TO SVG PATHS ################
def _get_spline(sfd):
if 'SplineSet' not in sfd:
return ''
pro = sfd[sfd.index('SplineSet') + 10:] # 10 is the 'SplineSet'
pro = pro[:pro.index('EndSplineSet')]
return pro
def _spline_to_path_list(spline, height, replace_with_prev=False):
"""Converts SplineSet to a list of tokenized commands in svg path."""
path = []
prev_xy = []
for line in spline.splitlines():
if not line:
continue
tokens = line.split(' ')
cmd = tokens[-2]
if cmd not in 'cml':
# COMMAND NOT RECOGNIZED.
return []
# assert cmd in 'cml', 'Command not recognized: {}'.format(cmd)
args = tokens[:-2]
args = [float(x) for x in args if x]
if replace_with_prev and cmd in 'c':
args[:2] = prev_xy
prev_xy = args[-2:]
new_y_args = []
for i, a in enumerate(args):
if i % 2 == 1:
new_y_args.append((height - a))
else:
new_y_args.append((a))
path.append([cmd.upper()] + new_y_args)
return path
def _sfd_to_path_list(single, replace_with_prev=False):
"""Converts the given SFD glyph into a path."""
return _spline_to_path_list(_get_spline(single['sfd']), single['vwidth'], replace_with_prev)
#################### UTILS FOR PROCESSING TOKENIZED PATHS #####################
def _add_missing_cmds(path, remove_zs=False):
"""Adds missing cmd tags to the commands in the svg."""
# For instance, the command 'a' takes 7 arguments, but some SVGs declare:
# a 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Which is 14 arguments. This function converts the above to the equivalent:
# a 1 2 3 4 5 6 7 a 8 9 10 11 12 13 14
#
# Note: if remove_zs is True, this also removes any occurences of z commands.
new_path = []
for cmd in path:
if not remove_zs or cmd[0] not in 'Zz':
for new_cmd in add_missing_cmd(cmd):
new_path.append(new_cmd)
return new_path
def add_missing_cmd(command_list):
"""Adds missing cmd tags to the given command list."""
# E.g.: given:
# ['a', '0', '0', '0', '0', '0', '0', '0',
# '0', '0', '0', '0', '0', '0', '0']
# Converts to:
# [['a', '0', '0', '0', '0', '0', '0', '0'],
# ['a', '0', '0', '0', '0', '0', '0', '0']]
# And returns a string that joins these elements with spaces.
cmd_tag = command_list[0]
args = command_list[1:]
final_cmds = []
for arg_batch in grouper(args, NUM_ARGS[cmd_tag]):
final_cmds.append([cmd_tag] + list(arg_batch))
if not final_cmds:
# command has no args (e.g.: 'z')
final_cmds = [[cmd_tag]]
return final_cmds
def _normalize_args(arglist, norm, add=None, flip=False):
"""Normalize the given args with the given norm value."""
new_arglist = []
for i, arg in enumerate(arglist):
new_arg = float(arg)
if add is not None:
add_to_x, add_to_y = add
# This argument is an x-coordinate if even, y-coordinate if odd
# except when flip == True
if i % 2 == 0:
new_arg += add_to_y if flip else add_to_x
else:
new_arg += add_to_x if flip else add_to_y
new_arglist.append(str(24 * new_arg / norm))
return new_arglist
def _normalize_based_on_viewbox(path, viewbox):
"""Normalizes all args in a path to a standard 24x24 viewbox."""
# Each SVG lives in a 2D plane. The viewbox determines the region of that
# plane that gets rendered. For instance, some designers may work with a
# viewbox that's 24x24, others with one that's 100x100, etc.
# Suppose I design the the letter "h" in the Arial style using a 100x100
# viewbox (let's call it icon A). Let's suppose the icon has height 75. Then,
# I design the same character using a 20x20 viewbox (call this icon B), with
# height 15 (=75% of 20). This means that, when rendered, both icons with look
# exactly the same, but the scale of the commands each icon is using is
# different. For instance, if icon A has a command like "lineTo 100 100", the
# equivalent command in icon B will be "lineTo 20 20".
# In order to avoid this problem and bring all real values to the same scale,
# I scale all icons' commands to use a 24x24 viewbox. This function does this:
# it converts a path that exists in the given viewbox into a standard 24x24
# viewbox.
viewbox = viewbox.split(' ')
norm = max(int(viewbox[-1]), int(viewbox[-2]))
if int(viewbox[-1]) > int(viewbox[-2]):
add_to_y = 0
add_to_x = abs(int(viewbox[-1]) - int(viewbox[-2])) / 2
else:
add_to_y = abs(int(viewbox[-1]) - int(viewbox[-2])) / 2
add_to_x = 0
new_path = []
for command in path:
if command[0] == 'a':
new_path.append([command[0]] + _normalize_args(command[1:3], norm)
+ command[3:6] + _normalize_args(command[6:], norm))
elif command[0] == 'A':
new_path.append([command[0]] + _normalize_args(command[1:3], norm)
+ command[3:6] + _normalize_args(command[6:], norm, add=(add_to_x, add_to_y)))
elif command[0] == 'V':
new_path.append([command[0]] + _normalize_args(command[1:], norm, add=(add_to_x, add_to_y), flip=True))
elif command[0] == command[0].upper():
new_path.append([command[0]] + _normalize_args(command[1:], norm, add=(add_to_x, add_to_y)))
elif command[0] in 'zZ':
new_path.append([command[0]])
else:
new_path.append([command[0]] + _normalize_args(command[1:], norm))
return new_path
def _convert_args(args, curr_pos, cmd):
"""Converts given args to relative values."""
# NOTE: glyphs only use a very small subset of commands (L, C, M, and Z -- I
# believe). So I'm not handling A and H for now.
if cmd in 'AH':
raise NotImplementedError('These commands have >6 args (not supported).')
new_args = []
for i, arg in enumerate(args):
x_or_y = i % 2
if cmd == 'H':
x_or_y = (i + 1) % 2
new_args.append(str(float(arg) - curr_pos[x_or_y]))
return new_args
def _update_curr_pos(curr_pos, cmd, start_of_path):
"""Calculate the position of the pen after cmd is applied."""
if cmd[0] in 'ml':
curr_pos = [curr_pos[0] + float(cmd[1]), curr_pos[1] + float(cmd[2])]
if cmd[0] == 'm':
start_of_path = curr_pos
elif cmd[0] in 'z':
curr_pos = start_of_path
elif cmd[0] in 'h':
curr_pos = [curr_pos[0] + float(cmd[1]), curr_pos[1]]
elif cmd[0] in 'v':
curr_pos = [curr_pos[0], curr_pos[1] + float(cmd[1])]
elif cmd[0] in 'ctsqa':
curr_pos = [curr_pos[0] + float(cmd[-2]), curr_pos[1] + float(cmd[-1])]
return curr_pos, start_of_path
def _make_relative(cmds):
"""Convert commands in a path to relative positioning."""
curr_pos = (0.0, 0.0)
start_of_path = (0.0, 0.0)
new_cmds = []
for cmd in cmds:
if cmd[0].lower() == cmd[0]:
new_cmd = cmd
elif cmd[0].lower() == 'z':
new_cmd = [cmd[0].lower()]
else:
new_cmd = [cmd[0].lower()] + _convert_args(cmd[1:], curr_pos, cmd=cmd[0])
new_cmds.append(new_cmd)
curr_pos, start_of_path = _update_curr_pos(curr_pos, new_cmd, start_of_path)
return new_cmds
def _is_to_left_of(pt1, pt2):
pt1_norm = (pt1[0]**2 + pt1[1]**2)
pt2_norm = (pt2[0]**2 + pt2[1]**2)
return pt1[1] < pt2[1] or (pt1_norm == pt2_norm and pt1[0] < pt2[0])
def _get_leftmost_point(path):
"""Returns the leftmost, topmost point of the path."""
leftmost = (float('inf'), float('inf'))
idx = -1
for i, cmd in enumerate(path):
if len(cmd) > 1:
endpoint = cmd[-2:]
if _is_to_left_of(endpoint, leftmost):
leftmost = endpoint
idx = i
return leftmost, idx
def _separate_substructures(path):
"""Returns a list of subpaths, each representing substructures the glyph."""
substructures = []
curr = []
for cmd in path:
if cmd[0] in 'mM' and curr:
substructures.append(curr)
curr = []
curr.append(cmd)
if curr:
substructures.append(curr)
return substructures
def _is_clockwise(subpath):
"""Returns whether the given subpath is clockwise-oriented."""
pts = [cmd[-2:] for cmd in subpath]
det = 0
for i in range(len(pts) - 1):
det += np.linalg.det(pts[i:i + 2])
return det > 0
def _make_clockwise(subpath):
"""Inverts the cardinality of the given subpath."""
new_path = [subpath[0]]
other_cmds = list(reversed(subpath[1:]))
for i, cmd in enumerate(other_cmds):
if i + 1 == len(other_cmds):
where_we_were = subpath[0][-2:]
else:
where_we_were = other_cmds[i + 1][-2:]
if len(cmd) > 3:
new_cmd = [cmd[0], cmd[3], cmd[4], cmd[1], cmd[2],
where_we_were[0], where_we_were[1]]
else:
new_cmd = [cmd[0], where_we_were[0], where_we_were[1]]
new_path.append(new_cmd)
return new_path
def _canonicalize(path):
"""Makes all paths start at top left, and go clockwise first."""
# convert args to floats
path = [[x[0]] + list(map(float, x[1:])) for x in path]
# _canonicalize each subpath separately
new_substructures = []
for subpath in _separate_substructures(path):
leftmost_point, leftmost_idx = _get_leftmost_point(subpath)
reordered = ([['M', leftmost_point[0], leftmost_point[1]]] + subpath[leftmost_idx + 1:] + subpath[1:leftmost_idx + 1])
new_substructures.append((reordered, leftmost_point))
new_path = []
first_substructure_done = False
should_flip_cardinality = False
for sp, _ in sorted(new_substructures, key=lambda x: (x[1][1], x[1][0])):
if not first_substructure_done:
# we're looking at the first substructure now, we can determine whether we
# will flip the cardniality of the whole icon or not
should_flip_cardinality = not _is_clockwise(sp)
first_substructure_done = True
if should_flip_cardinality:
sp = _make_clockwise(sp)
new_path.extend(sp)
# convert args to strs
path = [[x[0]] + list(map(str, x[1:])) for x in new_path]
return path
# ######### UTILS FOR CONVERTING TOKENIZED PATHS TO VECTORS ###########
def _path_to_vector(path, categorical=False):
"""Converts path's commands to a series of vectors."""
# Notes:
# - The SimpleSVG dataset does not have any 't', 'q', 'Z', 'T', or 'Q'.
# Thus, we don't handle those here.
# - We also removed all 'z's.
# - The x-axis-rotation argument to a commands is always 0 in this
# dataset, so we ignore it
# Many commands have args that correspond to args in other commands.
# v __,__ _______________ ______________,_________ __,__ __,__ _,y
# h __,__ _______________ ______________,_________ __,__ __,__ x,_
# z __,__ _______________ ______________,_________ __,__ __,__ _,_
# a rx,ry x-axis-rotation large-arc-flag,sweepflag __,__ __,__ x,y
# l __,__ _______________ ______________,_________ __,__ __,__ x,y
# c __,__ _______________ ______________,_________ x1,y1 x2,y2 x,y
# m __,__ _______________ ______________,_________ __,__ __,__ x,y
# s __,__ _______________ ______________,_________ __,__ x2,y2 x,y
# So each command will be converted to a vector where the dimension is the
# minimal number of arguments to all commands:
# [rx, ry, large-arc-flag, sweepflag, x1, y1, x2, y2, x, y]
# If a command does not output a certain arg, it is set to 0.
# "l 5,5" becomes [0, 0, 0, 0, 0, 0, 0, 0, 5, 5]
# Also note, as of now we also output an extra dimension at index 0, which
# indicates which command is being outputted (integer).
new_path = []
for cmd in path:
new_path.append(_cmd_to_vector(cmd, categorical=categorical))
return new_path
def _cmd_to_vector(cmd_list, categorical=False):
"""Converts the given command (given as a list) into a vector."""
# For description of how this conversion happens, see
# _path_to_vector docstring.
cmd = cmd_list[0]
args = cmd_list[1:]
if not categorical:
# integer, for MSE
command = [float(CMD_MAPPING[cmd])]
else:
# one hot + 1 dim for EOS.
command = [0.0] * (len(CMDS_LIST) + 1)
command[CMD_MAPPING[cmd] + 1] = 1.0
arguments = [0.0] * 10
if cmd in 'hH':
arguments[8] = float(args[0]) # x
elif cmd in 'vV':
arguments[9] = float(args[0]) # y
elif cmd in 'mMlLtT':
arguments[8] = float(args[0]) # x
arguments[9] = float(args[1]) # y
elif cmd in 'sSqQ':
arguments[6] = float(args[0]) # x2
arguments[7] = float(args[1]) # y2
arguments[8] = float(args[2]) # x
arguments[9] = float(args[3]) # y
elif cmd in 'cC':
arguments[4] = float(args[0]) # x1
arguments[5] = float(args[1]) # y1
arguments[6] = float(args[2]) # x2
arguments[7] = float(args[3]) # y2
arguments[8] = float(args[4]) # x
arguments[9] = float(args[5]) # y
elif cmd in 'aA':
arguments[0] = float(args[0]) # rx
arguments[1] = float(args[1]) # ry
# we skip x-axis-rotation
arguments[2] = float(args[3]) # large-arc-flag
arguments[3] = float(args[4]) # sweep-flag
# a does not have x1, y1, x2, y2 args
arguments[8] = float(args[5]) # x
arguments[9] = float(args[6]) # y
return command + arguments
################## UTILS FOR RENDERING PATH INTO IMAGE #################
def _cubicbezier(x0, y0, x1, y1, x2, y2, x3, y3, n=40):
"""Return n points along cubiz bezier with given control points."""
# from http://rosettacode.org/wiki/Bitmap/B%C3%A9zier_curves/Cubic
pts = []
for i in range(n + 1):
t = float(i) / float(n)
a = (1. - t)**3
b = 3. * t * (1. - t)**2
c = 3.0 * t**2 * (1.0 - t)
d = t**3
x = float(a * x0 + b * x1 + c * x2 + d * x3)
y = float(a * y0 + b * y1 + c * y2 + d * y3)
pts.append((x, y))
return list(zip(*pts))
def _update_pos(curr_pos, end_pos, absolute):
if absolute:
return end_pos
return curr_pos[0] + end_pos[0], curr_pos[1] + end_pos[1]
def constant_color(*unused_args):
return np.array([255, 255, 255])
def _render_cubic(canvas, curr_pos, c_args, absolute, color):
"""Renders a cubic bezier curve in the given canvas."""
if not absolute:
c_args[0] += curr_pos[0]
c_args[1] += curr_pos[1]
c_args[2] += curr_pos[0]
c_args[3] += curr_pos[1]
c_args[4] += curr_pos[0]
c_args[5] += curr_pos[1]
x, y = _cubicbezier(curr_pos[0], curr_pos[1],
c_args[0], c_args[1],
c_args[2], c_args[3],
c_args[4], c_args[5])
max_possible = len(canvas)
x = [int(round(x_)) for x_ in x]
y = [int(round(y_)) for y_ in y]
def within_range(x):
return 0 <= x < max_possible
filtered = [(x_, y_) for x_, y_ in zip(x, y)
if within_range(x_) and within_range(y_)]
if not filtered:
return
x, y = list(zip(*filtered))
canvas[y, x, :] = color
def _render_line(canvas, curr_pos, l_args, absolute, color):
"""Renders a line in the given canvas."""
end_point = l_args
if not absolute:
end_point[0] += curr_pos[0]
end_point[1] += curr_pos[1]
rr, cc, val = draw.line_aa(int(curr_pos[0]), int(curr_pos[1]),
int(end_point[0]), int(end_point[1]))
max_possible = len(canvas)
def within_range(x):
return 0 <= x < max_possible
filtered = [(x, y, v) for x, y, v in zip(rr, cc, val)
if within_range(x) and within_range(y)]
if not filtered:
return
rr, cc, val = list(zip(*filtered))
val = [(v * color) for v in val]
canvas[cc, rr, :] = val
def _per_step_render(path, absolute=False, color=constant_color):
"""Render the icon's edges, given its path."""
def to_canvas_size(l):
return [float(f) * (64. / 24.) for f in l]
canvas = np.zeros((64, 64, 3))
curr_pos = (0.0, 0.0)
for i, cmd in enumerate(path):
if not cmd:
continue
if cmd[0] in 'mM':
curr_pos = _update_pos(curr_pos, to_canvas_size(cmd[-2:]), absolute)
elif cmd[0] in 'cC':
_render_cubic(canvas, curr_pos, to_canvas_size(cmd[1:]), absolute, color(i, 55))
curr_pos = _update_pos(curr_pos, to_canvas_size(cmd[-2:]), absolute)
elif cmd[0] in 'lL':
_render_line(canvas, curr_pos, to_canvas_size(cmd[1:]), absolute, color(i, 55))
curr_pos = _update_pos(curr_pos, to_canvas_size(cmd[1:]), absolute)
return canvas
def _zoom_out(path_list, add_baseline=0., per=22):
"""Makes glyph slightly smaller in viewbox, makes some descenders visible."""
# assumes tensor is already unnormalized, and in long form
new_path = []
for command in path_list:
args = []
is_even = False
for arg in command[1:]:
if is_even:
args.append(str(float(arg) - ((24. - per) / 24.) * 64. / 4.))
is_even = False
else:
args.append(str(float(arg) - add_baseline))
is_even = True
new_path.append([command[0]] + args)
return new_path
##################### UTILS FOR PROCESSING VECTORS ################
def _append_eos(sample, categorical, feature_dim):
if not categorical:
eos = -1 * np.ones(feature_dim)
else:
eos = np.zeros(feature_dim)
eos[0] = 1.0
sample.append(eos)
return sample
def _make_simple_cmds_long(out):
"""Converts svg decoder output to format required by some render functions."""
# out has 10 dims
# the first 4 are respectively dims 0, 4, 5, 9 of the full 20-dim onehot vec
# the latter 6 are the 6 last dims of the 10-dim arg vec
shape_minus_dim = list(np.shape(out))[:-1]
return np.concatenate([out[..., :1],
np.zeros(shape_minus_dim + [3]),
out[..., 1:3],
np.zeros(shape_minus_dim + [3]),
out[..., 3:4],
np.zeros(shape_minus_dim + [14]),
out[..., 4:]], -1)
################# UTILS FOR CONVERTING VECTORS TO SVGS ########################
def _vector_to_svg(vectors, stop_at_eos=False, categorical=False):
"""Tranforms a given vector to an svg string."""
new_path = []
for vector in vectors:
if stop_at_eos:
if categorical:
try:
is_eos = np.argmax(vector[:len(CMDS_LIST) + 1]) == 0
except Exception:
raise Exception(vector)
else:
is_eos = vector[0] < -0.5
if is_eos:
break
new_path.append(' '.join(_vector_to_cmd(vector, categorical=categorical)))
new_path = ' '.join(new_path)
return SVG_PREFIX_BIG + PATH_PREFIX_1 + new_path + PATH_POSFIX_1 + SVG_POSFIX
def _vector_to_cmd(vector, categorical=False, return_floats=False):
"""Does the inverse transformation as _cmd_to_vector()."""
cast_fn = float if return_floats else str
if categorical:
command = vector[:len(CMDS_LIST) + 1],
arguments = vector[len(CMDS_LIST) + 1:]
cmd_idx = np.argmax(command) - 1
else:
command, arguments = vector[:1], vector[1:]
cmd_idx = int(round(command[0]))
if cmd_idx < -0.5:
# EOS
return []
if cmd_idx >= len(CMDS_LIST):
cmd_idx = len(CMDS_LIST) - 1
cmd = CMDS_LIST[cmd_idx]
cmd = cmd.upper()
cmd_list = [cmd]
if cmd in 'hH':
cmd_list.append(cast_fn(arguments[8])) # x
elif cmd in 'vV':
cmd_list.append(cast_fn(arguments[9])) # y
elif cmd in 'mMlLtT':
cmd_list.append(cast_fn(arguments[8])) # x
cmd_list.append(cast_fn(arguments[9])) # y
elif cmd in 'sSqQ':
cmd_list.append(cast_fn(arguments[6])) # x2
cmd_list.append(cast_fn(arguments[7])) # y2
cmd_list.append(cast_fn(arguments[8])) # x
cmd_list.append(cast_fn(arguments[9])) # y
elif cmd in 'cC':
cmd_list.append(cast_fn(arguments[4])) # x1
cmd_list.append(cast_fn(arguments[5])) # y1
cmd_list.append(cast_fn(arguments[6])) # x2
cmd_list.append(cast_fn(arguments[7])) # y2
cmd_list.append(cast_fn(arguments[8])) # x
cmd_list.append(cast_fn(arguments[9])) # y
elif cmd in 'aA':
cmd_list.append(cast_fn(arguments[0])) # rx
cmd_list.append(cast_fn(arguments[1])) # ry
# x-axis-rotation is always 0
cmd_list.append(cast_fn('0'))
# the following two flags are binary.
cmd_list.append(cast_fn(1 if arguments[2] > 0.5 else 0)) # large-arc-flag
cmd_list.append(cast_fn(1 if arguments[3] > 0.5 else 0)) # sweep-flag
cmd_list.append(cast_fn(arguments[8])) # x
cmd_list.append(cast_fn(arguments[9])) # y
return cmd_list
############## UTILS FOR CONVERTING SVGS/VECTORS TO IMAGES ###################
# From Infer notebook
start = ("""<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www."""
"""w3.org/1999/xlink" width="256px" height="256px" style="-ms-trans"""
"""form: rotate(360deg); -webkit-transform: rotate(360deg); transfo"""
"""rm: rotate(360deg);" preserveAspectRatio="xMidYMid meet" viewBox"""
"""="0 0 24 30"><path d=\"""")
end = """\" fill="currentColor"/></svg>"""
COMMAND_RX = re.compile("([MmLlHhVvCcSsQqTtAaZz])")
FLOAT_RX = re.compile("[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?") # noqa
def svg_html_to_path_string(svg):
return svg.replace(start, '').replace(end, '')
def _tokenize(pathdef):
"""Returns each svg token from path list."""
# e.g.: 'm0.1-.5c0,6' -> m', '0.1, '-.5', 'c', '0', '6'
for x in COMMAND_RX.split(pathdef):
if x != '' and x in 'MmLlHhVvCcSsQqTtAaZz':
yield x
for token in FLOAT_RX.findall(x):
yield token
def path_string_to_tokenized_commands(path):
"""Tokenizes the given path string.
E.g.:
Given M 0.5 0.5 l 0.25 0.25 z
Returns [['M', '0.5', '0.5'], ['l', '0.25', '0.25'], ['z']]
"""
new_path = []
current_cmd = []
for token in _tokenize(path):
if len(current_cmd) > 0:
if token in 'MmLlHhVvCcSsQqTtAaZz':
# cmd ended, convert to vector and add to new_path
new_path.append(current_cmd)
current_cmd = [token]
else:
# add arg to command
current_cmd.append(token)
else:
# add to start new cmd
current_cmd.append(token)
if current_cmd:
# process command still unprocessed
new_path.append(current_cmd)
return new_path
def separate_substructures(tokenized_commands):
"""Returns a list of SVG substructures."""
# every moveTo command starts a new substructure
# an SVG substructure is a subpath that closes on itself
# such as the outter and the inner edge of the character `o`
substructures = []
curr = []
for cmd in tokenized_commands:
if cmd[0] in 'mM' and len(curr) > 0:
substructures.append(curr)
curr = []
curr.append(cmd)
if len(curr) > 0:
substructures.append(curr)
return substructures
def postprocess(svg, dist_thresh=2., skip=False):
path = svg_html_to_path_string(svg)
svg_template = svg.replace(path, '{}')
tokenized_commands = path_string_to_tokenized_commands(path)
def dist(a, b):
return np.sqrt((float(a[0]) - float(b[0]))**2 + (float(a[1]) - float(b[1]))**2)
def are_close_together(a, b, t):
return dist(a, b) < t
# first, go through each start/end point and merge if they're close enough
# together (that is, make end point the same as the start point).
# TODO: there are better ways of doing this, in a way that propagates error
# back (so if total error is 0.2, go through all N commands in this
# substructure and fix each by 0.2/N (unless they have 0 vertical change))
substructures = separate_substructures(tokenized_commands)
previous_substructure_endpoint = (0., 0.,)
for substructure in substructures:
# first, if the last substructure's endpoint was updated, we must update
# the start point of this one to reflect the opposite update
substructure[0][-2] = str(float(substructure[0][-2]) -
previous_substructure_endpoint[0])
substructure[0][-1] = str(float(substructure[0][-1]) -
previous_substructure_endpoint[1])
start = list(map(float, substructure[0][-2:]))
curr_pos = (0., 0.)
for cmd in substructure:
curr_pos, _ = _update_curr_pos(curr_pos, cmd, (0., 0.))
if are_close_together(start, curr_pos, dist_thresh):
new_point = np.array(start)
previous_substructure_endpoint = ((new_point[0] - curr_pos[0]),
(new_point[1] - curr_pos[1]))
substructure[-1][-2] = str(float(substructure[-1][-2]) +
(new_point[0] - curr_pos[0]))
substructure[-1][-1] = str(float(substructure[-1][-1]) +
(new_point[1] - curr_pos[1]))
if substructure[-1][0] in 'cC':
substructure[-1][-4] = str(float(substructure[-1][-4]) +
(new_point[0] - curr_pos[0]))
substructure[-1][-3] = str(float(substructure[-1][-3]) +
(new_point[1] - curr_pos[1]))
if skip:
return svg_template.format(' '.join([' '.join(' '.join(cmd) for cmd in s)
for s in substructures]))
def cosa(x, y):
return (x[0] * y[0] + x[1] * y[1]) / ((np.sqrt(x[0]**2 + x[1]**2) * np.sqrt(y[0]**2 + y[1]**2)))
def rotate(a, x, y):
return (x * np.cos(a) - y * np.sin(a), y * np.cos(a) + x * np.sin(a))
# second, gotta find adjacent bezier curves and, if their control points
# are well enough aligned, fully align them
for substructure in substructures:
curr_pos = (0., 0.)
new_curr_pos, _ = _update_curr_pos((0., 0.,), substructure[0], (0., 0.))
for cmd_idx in range(1, len(substructure)):
prev_cmd = substructure[cmd_idx-1]
cmd = substructure[cmd_idx]
new_new_curr_pos, _ = _update_curr_pos(
new_curr_pos, cmd, (0., 0.))
if cmd[0] == 'c':
if prev_cmd[0] == 'c':
# check the vectors and update if needed
# previous control pt wrt new curr point
prev_ctr_point = (curr_pos[0] + float(prev_cmd[3]) - new_curr_pos[0],
curr_pos[1] + float(prev_cmd[4]) - new_curr_pos[1])
ctr_point = (float(cmd[1]), float(cmd[2]))
if -1. < cosa(prev_ctr_point, ctr_point) < -0.95:
# calculate exact angle between the two vectors
angle_diff = (np.pi - np.arccos(cosa(prev_ctr_point, ctr_point)))/2
# rotate each vector by angle/2 in the correct direction for each.
sign = np.sign(np.cross(prev_ctr_point, ctr_point))
new_ctr_point = rotate(sign * angle_diff, *ctr_point)
new_prev_ctr_point = rotate(-sign * angle_diff, *prev_ctr_point)
# override the previous control points
# (which has to be wrt previous curr position)
substructure[cmd_idx-1][3] = str(new_prev_ctr_point[0] -
curr_pos[0] + new_curr_pos[0])
substructure[cmd_idx-1][4] = str(new_prev_ctr_point[1] -
curr_pos[1] + new_curr_pos[1])
substructure[cmd_idx][1] = str(new_ctr_point[0])
substructure[cmd_idx][2] = str(new_ctr_point[1])
curr_pos = new_curr_pos
new_curr_pos = new_new_curr_pos
return svg_template.format(' '.join([' '.join(' '.join(cmd) for cmd in s)
for s in substructures]))
# def get_means_stdevs(data_dir):
# """Returns the means and stdev saved in data_dir."""
# if data_dir not in means_stdevs:
# with tf.gfile.Open(os.path.join(data_dir, 'mean.npz'), 'r') as f:
# mean_npz = np.load(f)
# with tf.gfile.Open(os.path.join(data_dir, 'stdev.npz'), 'r') as f:
# stdev_npz = np.load(f)
# means_stdevs[data_dir] = (mean_npz, stdev_npz)
# return means_stdevs[data_dir]
def render(tensor, data_dir=None):
"""Converts SVG decoder output into HTML svg."""
# undo normalization
# mean_npz, stdev_npz = get_means_stdevs(data_dir)
# tensor = (tensor * stdev_npz) + mean_npz
# convert to html
tensor = _make_simple_cmds_long(tensor)
# vector = np.squeeze(np.squeeze(tensor, 0), 2)
html = _vector_to_svg(tensor, stop_at_eos=True, categorical=True)
# some aesthetic postprocessing
html = postprocess(html)
html = html.replace('256px', '50px')
return html
###############
def convert_to_svg(decoder_output, categorical=False):
converted = []
for example in decoder_output:
converted.append(_vector_to_svg(example, True, categorical=categorical))
return np.array(converted)
def create_image_conversion_fn(max_outputs, categorical=False):
"""Binds the number of outputs to the image conversion fn (to svg or png)."""
def convert_to_svg(decoder_output):
converted = []
for example in decoder_output:
if len(converted) == max_outputs:
break
converted.append(_vector_to_svg(example, True, categorical=categorical))
return np.array(converted)
return convert_to_svg
################### UTILS FOR CREATING TF SUMMARIES ##########################
def _make_encoded_image(img_tensor):
pil_img = Image.fromarray(np.squeeze(img_tensor * 255).astype(np.uint8), mode='L')
buff = io.BytesIO()
pil_img.save(buff, format='png')
encoded_image = buff.getvalue()
return encoded_image
################### CHECK GLYPH/PATH VALID ##############################################
def is_valid_glyph(g):
is_09 = 48 <= g['uni'] <= 57
is_capital_az = 65 <= g['uni'] <= 90
is_az = 97 <= g['uni'] <= 122
is_valid_dims = g['width'] != 0 and g['vwidth'] != 0
return (is_09 or is_capital_az or is_az) and is_valid_dims
def is_valid_path(pathunibfp):
return pathunibfp[0] and len(pathunibfp[0]) <= MAX_SEQ_LEN
################### DATASET PROCESSING #######################################
def convert_to_path(g):
"""Converts SplineSet in SFD font to str path."""
path = _sfd_to_path_list(g)
path = _add_missing_cmds(path, remove_zs=False)
path = _normalize_based_on_viewbox(path, '0 0 {} {}'.format(g['width'], g['vwidth']))
return path, g['uni'], g['binary_fp']
def create_example(pathunibfp):
"""Bulk of dataset processing. Converts str path to np array"""
path, uni, binary_fp = pathunibfp
final = {}
# zoom out
path = _zoom_out(path)
# make clockwise
path = _canonicalize(path)
# render path for training
final['rendered'] = _per_step_render(path, absolute=True)
# make path relative
# path = _make_relative(path)
# convert to vector
vector = _path_to_vector(path, categorical=True)
# make simple vector
vector = np.array(vector)
vector = np.concatenate([np.take(vector, [0, 4, 5, 9], axis=-1), vector[..., -6:]], axis=-1)
# count some stats
final['seq_len'] = np.shape(vector)[0]
# final['class'] = int(_map_uni_to_alphanum(uni))
final['class'] = int(_map_uni_to_alpha(uni)) # be advised that the class is useless bcz it is all 0
final['binary_fp'] = str(binary_fp)
# append eos
vector = _append_eos(vector.tolist(), True, 10)
# pad path to MAX_SEQ_LEN + 1 (with eos)
final['sequence'] = np.concatenate((vector, np.zeros(((MAX_SEQ_LEN - final['seq_len']), 10))), 0)
# make pure list:
# use last channel only
final['rendered'] = np.reshape(final['rendered'][..., 0], [64 * 64]).astype(np.float32).tolist()
final['sequence'] = np.reshape(final['sequence'], [(MAX_SEQ_LEN + 1) * 10]).astype(np.float32).tolist()
final['class'] = np.reshape(final['class'], [1]).astype(np.int64).tolist()
final['seq_len'] = np.reshape(final['seq_len'], [1]).astype(np.int64).tolist()
return final
def mean_to_example(mean_stdev):
"""Converts the found mean and stdev to example."""
# mean_stdev is a dict
mean_stdev['mean'] = np.reshape(mean_stdev['mean'], [10]).astype(np.float32).tolist()
mean_stdev['variance'] = np.reshape(mean_stdev['variance'], [10]).astype(np.float32).tolist()
mean_stdev['stddev'] = np.reshape(mean_stdev['stddev'], [10]).astype(np.float32).tolist()
mean_stdev['count'] = np.reshape(mean_stdev['count'], [1]).astype(np.int64).tolist()
return mean_stdev
def convert_simple_vector_to_path(seq):
path=[]
for i in range(seq.shape[0]):
path_i=[]
cmd = np.argmax(seq[i][:4])
p0 = seq[i][4:6]
p1 = seq[i][6:8]
p2 = seq[i][8:10]
if cmd == 0:
break
elif cmd == 1:
path_i.append('M')
path_i.append(str(p2[0]))
path_i.append(str(p2[1]))
elif cmd == 2:
path_i.append('L')
path_i.append(str(p2[0]))
path_i.append(str(p2[1]))
elif cmd == 3:
path_i.append('C')
path_i.append(str(p0[0]))
path_i.append(str(p0[1]))
path_i.append(str(p1[0]))
path_i.append(str(p1[1]))
path_i.append(str(p2[0]))
path_i.append(str(p2[1]))
else:
print("wrong!!! to path")
path.append(path_i)
return path
def clockwise(seq):
path = convert_simple_vector_to_path(seq)
path = _canonicalize(path)
ret = {}
vector = _path_to_vector(path, categorical=True)
vector = np.array(vector)
vector = np.concatenate([np.take(vector, [0, 4, 5, 9], axis=-1), vector[..., -6:]], axis=-1)
ret['seq_len'] = np.shape(vector)[0]
vector = _append_eos(vector.tolist(), True, 10)
ret['sequence'] = np.concatenate((vector, np.zeros(((MAX_SEQ_LEN - ret['seq_len']), 10))), 0)
return ret
################### CHECK VALID ##############################################
class MeanStddev:
"""Accumulator to compute the mean/stdev of svg commands."""
def create_accumulator(self):
curr_sum = np.zeros([10])
sum_sq = np.zeros([10])
return (curr_sum, sum_sq, 0) # x, x^2, count
def add_input(self, sum_count, new_input):
(curr_sum, sum_sq, count) = sum_count
# new_input is a dict with keys = ['seq_len', 'sequence']
new_seq_len = new_input['seq_len'][0] # Line #754 'seq_len' is a list of one int
assert isinstance(new_seq_len, int), print(type(new_seq_len))
# remove padding and eos from sequence
assert isinstance(new_input['sequence'], list), print(type(new_input['sequence']))
new_input_np = np.reshape(np.array(new_input['sequence']), [-1, 10])
assert isinstance(new_input_np, np.ndarray), print(type())
assert new_input_np.shape[0] >= new_seq_len
new_input_np = new_input_np[:new_seq_len, :]
# accumulate new_sum and new_sum_sq
new_sum = np.sum([curr_sum, np.sum(new_input_np, axis=0)], axis=0)
new_sum_sq = np.sum([sum_sq, np.sum(np.power(new_input_np, 2), axis=0)],
axis=0)
return new_sum, new_sum_sq, count + new_seq_len
def merge_accumulators(self, accumulators):
curr_sums, sum_sqs, counts = list(zip(*accumulators))
return np.sum(curr_sums, axis=0), np.sum(sum_sqs, axis=0), np.sum(counts)
def extract_output(self, sum_count):
(curr_sum, curr_sum_sq, count) = sum_count
if count:
mean = np.divide(curr_sum, count)
variance = np.divide(curr_sum_sq, count) - np.power(mean, 2)
# -ve value could happen due to rounding
variance = np.max([variance, np.zeros(np.shape(variance))], axis=0)
stddev = np.sqrt(variance)
return {
'mean': mean,
'variance': variance,
'stddev': stddev,
'count': count
}
else:
return {
'mean': float('NaN'),
'variance': float('NaN'),
'stddev': float('NaN'),
'count': 0
} |