File size: 6,460 Bytes
d9da768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import streamlit as st
import time
from clip_client import Client
from docarray import Document
import os

# photo upload

IMAGES_FOLDER = 'images'
PAGE_LOAD_LOG_FILE = 'page_load_log.txt'
METRIC_TEXTS = {
    'Attractivness': ('this person is attractive', 'this person is unattractive'),
    'Hotness': ('this person is hot', 'this person is ugly'),
    'Trustworthiness': ('this person is trustworthy', 'this person is dishonest'),
    'Intelligence': ('this person is smart', 'this person is stupid'),
    'Quality': ('this image looks good', 'this image looks bad'),
}

st.set_page_config(page_title='AI Photo Rater', initial_sidebar_state="auto")


st.title('AI Photo Rater')

def log_page_load():
    with open(PAGE_LOAD_LOG_FILE, 'a') as f:
        f.write(f'{time.time()}\n')


def get_num_page_loads():
    with open(PAGE_LOAD_LOG_FILE, 'r') as f:
        return len(f.readlines())

def get_earliest_page_load_time():
    with open(PAGE_LOAD_LOG_FILE, 'r') as f:
        lines = f.readlines()
        unix_time = float(lines[0])

    date_string = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(unix_time))
    return date_string



def show_sidebar_metrics():
    metric_options = list(METRIC_TEXTS.keys())
    default_metrics = ['Attractivness', 'Trustworthiness', 'Intelligence'] 
    st.sidebar.title('Metrics')
    # metric = st.sidebar.selectbox('Select a metric', metric_options)
    selected_metrics = []
    for metric in metric_options:
        selected = metric in default_metrics
        if st.sidebar.checkbox(metric, selected):
            selected_metrics.append(metric)

    with st.sidebar.expander('Metric texts'):
        st.write(METRIC_TEXTS)

    print("selected_metrics:", selected_metrics)
    return selected_metrics


def get_custom_metric():
    st.sidebar.markdown('**Custom metric**:')
    metric_name = st.sidebar.text_input('Metric name', placeholder='e.g. "Youth"')
    metric_target = st.sidebar.text_input('Metric target', placeholder='this person is young')
    metric_opposite = st.sidebar.text_input('Metric opposite', placeholder='this person is old')
    return {metric_name: (metric_target, metric_opposite)}




log_page_load()

metrics = show_sidebar_metrics()
st.sidebar.markdown('---')
custom_metric = get_custom_metric()
st.sidebar.markdown('---')
st.sidebar.write(f'Page loads: {get_num_page_loads()}')
st.sidebar.write(f'Earliest page load: {get_earliest_page_load_time()}')

metric_texts = METRIC_TEXTS
print("custom_metric:", custom_metric)
custom_key = list(custom_metric.keys())[0]
if custom_key:
    custom_tuple = custom_metric[custom_key]
    if custom_tuple[0] and custom_tuple[1]:
        metrics.append(list(custom_metric.keys())[0])
        metric_texts = {**metric_texts, **custom_metric}

os.makedirs(IMAGES_FOLDER, exist_ok=True)

# photo_file = st.file_uploader("Upload a photo", type=["jpg", "png"])
photo_files = st.file_uploader("Upload a photo", accept_multiple_files=True)
# sort them
photo_files = sorted(photo_files, key=lambda x: x.name)

if not photo_files:
    st.stop()



c = Client('grpcs://demo-cas.jina.ai:2096')


@st.cache(show_spinner=False)
def rate_image(image_path, target, opposite, attempt=0):
    try:
        r = c.rank(
            [
                Document(
                    # uri='https://www.pngall.com/wp-content/uploads/12/Britney-Spears-PNG-Image-File.png',
                    uri=image_path,
                    matches=[
                        Document(text=target),
                        Document(text=opposite),
                    ],
                )
            ]
        )
    except ConnectionError as e:
        print(e)
        print(f'Retrying... {attempt}')
        time.sleep(2**attempt)
        return rate_image(image_path, target, opposite, attempt + 1)
    text_and_scores = r['@m', ['text', 'scores__clip_score__value']]
    index_of_good_text = text_and_scores[0].index(target)
    score =  text_and_scores[1][index_of_good_text]
    return score


# @st.cache
def process_image(photo_file, metrics):
    col1, col2, col3 = st.columns([10,10,10])
    with st.spinner('Loading...'):
        with col1:
            st.write('')
        with col2:
            st.image(photo_file, use_column_width=True)
        with col3:
            st.write('')


    # save it
    filename = f'{time.time()}'.replace('.', '_')
    filename_path = f'{IMAGES_FOLDER}/{filename}'
    with open(f'{filename_path}', 'wb') as f:
        f.write(photo_file.read())





    with st.spinner('Rating your photo...'):
        scores = dict()
        for metric in metrics:
            target = metric_texts[metric][0]
            opposite = metric_texts[metric][1]
            score = rate_image(filename_path, target, opposite)
            scores[metric] = score


        scores['Avg'] = sum(scores.values()) / len(scores)

        # plot them
        import plotly.graph_objects as go


        scores_percent = []
        for metric in metrics:
            scores_percent.append(scores[metric] * 100)
        fig = go.Figure(data=[go.Bar(x=metrics, y=scores_percent)], layout=go.Layout(title='Scores'))
        # range 0 to 100 for the y axis:
        fig.update_layout(yaxis=dict(range=[0, 100]))

        st.plotly_chart(fig, use_container_width=True)

    return filename_path, scores


def get_best_image(image_scores_list, metric):
    best_image = image_scores_list[0][0]
    best_score = image_scores_list[0][1][metric]
    for image, scores in image_scores_list[2:]:
        if scores[metric] > best_score:
            best_image = image
            best_score = scores[metric]
    return best_image




image_scores_list = []
for photo_file in photo_files:
    # process_image(photo_file)
    filename_path, scores = process_image(photo_file, metrics)
    # image_scores_list.append((filename_path, scores))
    image_scores_list.append((photo_file, scores))
    st.markdown('---')


if len(photo_files) > 1:
    st.title('Best image')
    metric = st.selectbox('Select a metric', ['Avg'] + metrics)
    image_file = get_best_image(image_scores_list, metric)
    # st.image(image_file, use_column_width=True)
    # from PIL import Image
    # image_file = Image.open(image_path)
    process_image(image_file, metrics)


st.markdown('---')

col1, col2, col3 = st.columns([10,10,10])
with col1:
    st.markdown('[GiHub Repo](https://github.com/tom-doerr/ai_photo_rater)')

with col2:
    st.markdown('Powered by [Jina.ai](https://jina.ai/)')