File size: 16,326 Bytes
7e828dc 3887148 7e828dc 3887148 7e828dc 3887148 7e828dc 3887148 7e828dc 3887148 7e828dc 3887148 7e828dc 3887148 7e828dc 89879a0 7e828dc 89879a0 7e828dc 89879a0 7e828dc 89879a0 7e828dc 89879a0 7e828dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
"""
Pydantic AI 服務 - 使用 Pydantic AI 框架整合 Groq 和商品查詢功能
解決商品查詢準確性問題,特別是像 "是否有推薦貓砂?" 這類查詢
"""
import logging
from typing import Dict, Any, List, Optional
from dataclasses import dataclass
from pydantic import BaseModel, Field
from pydantic_ai import Agent, RunContext
from backend.services.enhanced_product_service import EnhancedProductService
from backend.services.database_service import DatabaseService
from backend.config import settings
logger = logging.getLogger(__name__)
# 依賴注入類型
@dataclass
class ProductQueryDependencies:
"""商品查詢依賴"""
enhanced_product_service: EnhancedProductService
database_service: DatabaseService
user_id: Optional[str] = None
# 輸出模型
class ProductQueryResult(BaseModel):
"""商品查詢結果"""
intent: str = Field(description="查詢意圖")
response_text: str = Field(description="回應文字")
products_found: int = Field(description="找到的商品數量")
has_recommendations: bool = Field(description="是否包含推薦")
stock_info_included: bool = Field(description="是否包含庫存資訊")
search_keywords: List[str] = Field(default_factory=list, description="搜尋關鍵字")
class ProductQueryService:
"""Pydantic AI 商品查詢服務"""
def __init__(self):
self.enhanced_product_service = EnhancedProductService()
self.database_service = DatabaseService()
# 創建 Pydantic AI Agent
self.product_agent = Agent(
f'groq:{settings.GROQ_MODEL}',
deps_type=ProductQueryDependencies,
output_type=ProductQueryResult,
system_prompt=self._get_system_prompt()
)
# 註冊工具
self._register_tools()
def _get_system_prompt(self) -> str:
"""系統提示詞"""
return """你是一個專業的商品查詢助手,專門協助用戶查詢商品資訊。
你的主要任務:
1. 理解用戶的商品查詢意圖,包括推薦、搜尋、庫存查詢等
2. 使用適當的工具查詢商品資料庫
3. 提供準確、有用的商品資訊回應
特別注意:
- 當用戶詢問"推薦"、"有沒有"、"是否有"時,要積極查詢相關商品
- 優先顯示有庫存的商品
- 提供具體的商品名稱、庫存狀況和分類資訊
- 如果沒有找到完全匹配的商品,嘗試提供相似或相關的商品
回應要求:
- 使用繁體中文
- 語氣友善專業
- 資訊準確完整
- 如果有多個商品,按庫存量排序推薦"""
def _register_tools(self):
"""註冊 AI Agent 工具"""
@self.product_agent.tool
async def search_products(
ctx: RunContext[ProductQueryDependencies],
query_text: str,
include_recommendations: bool = False
) -> Dict[str, Any]:
"""
搜尋商品
Args:
query_text: 搜尋關鍵字
include_recommendations: 是否包含推薦功能
"""
try:
if include_recommendations:
# 使用推薦功能
result = ctx.deps.enhanced_product_service.get_product_recommendations(
query_text=query_text,
limit=10
)
else:
# 使用一般搜尋
result = ctx.deps.enhanced_product_service.search_products_advanced(
query_text=query_text,
include_stock_info=True,
limit=10
)
return {
"success": result.success,
"products": result.data,
"count": result.count,
"error": result.error
}
except Exception as e:
logger.error(f"商品搜尋工具錯誤: {str(e)}")
return {
"success": False,
"products": [],
"count": 0,
"error": str(e)
}
@self.product_agent.tool
async def get_products_by_category(
ctx: RunContext[ProductQueryDependencies],
category_name: str
) -> Dict[str, Any]:
"""
根據分類獲取商品
Args:
category_name: 分類名稱
"""
try:
result = ctx.deps.enhanced_product_service.get_products_by_category(
category_name=category_name,
limit=10
)
return {
"success": result.success,
"products": result.data,
"count": result.count,
"error": result.error
}
except Exception as e:
logger.error(f"分類查詢工具錯誤: {str(e)}")
return {
"success": False,
"products": [],
"count": 0,
"error": str(e)
}
@self.product_agent.tool
async def check_low_stock_products(
ctx: RunContext[ProductQueryDependencies],
threshold: int = 10
) -> Dict[str, Any]:
"""
檢查低庫存商品
Args:
threshold: 庫存閾值
"""
try:
result = ctx.deps.enhanced_product_service.get_low_stock_products(
threshold=threshold
)
return {
"success": result.success,
"products": result.data,
"count": result.count,
"error": result.error
}
except Exception as e:
logger.error(f"低庫存查詢工具錯誤: {str(e)}")
return {
"success": False,
"products": [],
"count": 0,
"error": str(e)
}
def process_product_query_sync(self, user_message: str, user_id: str = None) -> Dict[str, Any]:
"""
同步處理商品查詢 - 為了避免異步複雜性
Args:
user_message: 用戶訊息
user_id: 用戶ID
Returns:
查詢結果字典
"""
try:
logger.info(f"🔍 Pydantic AI 開始處理商品查詢: '{user_message}'")
# 分析查詢意圖
intent_analysis = self.analyze_query_intent(user_message)
logger.info(f"📊 意圖分析結果: {intent_analysis}")
if not intent_analysis["is_product_query"]:
logger.warning(f"❌ 非商品查詢意圖,拒絕處理")
return {
"success": False,
"text": "這似乎不是商品查詢,請嘗試其他功能。",
"mode": "product_query",
"error": "非商品查詢意圖"
}
# 根據意圖類型選擇查詢方法
if intent_analysis["is_recommendation"]:
logger.info(f"🛍️ 執行推薦查詢")
# 推薦查詢
result = self.enhanced_product_service.get_product_recommendations(
query_text=user_message,
limit=5
)
else:
logger.info(f"🔍 執行一般搜尋")
# 一般搜尋
result = self.enhanced_product_service.search_products_advanced(
query_text=user_message,
include_stock_info=True,
limit=10
)
logger.info(f"📋 查詢結果: 成功={result.success}, 數量={result.count}, 錯誤={result.error}")
# 格式化回應
if result.success and result.data:
response_text = self._format_product_response(result.data, intent_analysis)
return {
"success": True,
"intent": "product_query",
"text": response_text,
"products_found": result.count,
"has_recommendations": intent_analysis["is_recommendation"],
"stock_info_included": True,
"search_keywords": self._extract_keywords_from_message(user_message),
"mode": "product_query",
"user_id": user_id
}
else:
return {
"success": False,
"text": f"抱歉,沒有找到相關商品。{result.error if result.error else ''}",
"mode": "product_query",
"error": result.error,
"user_id": user_id
}
except Exception as e:
logger.error(f"❌ 同步商品查詢錯誤: {str(e)}")
import traceback
logger.error(f"📋 錯誤詳情: {traceback.format_exc()}")
return {
"success": False,
"text": f"抱歉,商品查詢時發生錯誤:{str(e)}",
"mode": "product_query",
"error": str(e),
"user_id": user_id
}
async def process_product_query(self, user_message: str, user_id: str = None) -> Dict[str, Any]:
"""
處理商品查詢
Args:
user_message: 用戶訊息
user_id: 用戶ID
Returns:
查詢結果字典
"""
try:
# 準備依賴
deps = ProductQueryDependencies(
enhanced_product_service=self.enhanced_product_service,
database_service=self.database_service,
user_id=user_id
)
# 執行 AI Agent
result = await self.product_agent.run(user_message, deps=deps)
# 記錄查詢
if user_id:
try:
self.database_service.save_message(user_id, user_message, "product_query")
except Exception as e:
logger.warning(f"記錄查詢失敗: {str(e)}")
return {
"success": True,
"intent": result.output.intent,
"text": result.output.response_text,
"products_found": result.output.products_found,
"has_recommendations": result.output.has_recommendations,
"stock_info_included": result.output.stock_info_included,
"search_keywords": result.output.search_keywords,
"mode": "product_query",
"user_id": user_id
}
except Exception as e:
logger.error(f"Pydantic AI 商品查詢錯誤: {str(e)}")
return {
"success": False,
"text": f"抱歉,商品查詢時發生錯誤:{str(e)}",
"mode": "product_query",
"error": str(e),
"user_id": user_id
}
def is_available(self) -> bool:
"""檢查服務是否可用"""
return bool(settings.GROQ_API_KEY)
def analyze_query_intent(self, message: str) -> Dict[str, Any]:
"""
分析查詢意圖 - 判斷是否為商品查詢
Args:
message: 用戶訊息
Returns:
意圖分析結果
"""
message_lower = message.lower()
# 商品查詢關鍵字(擴展版)
product_keywords = [
'推薦', '有沒有', '是否有', '請問有', '商品', '產品', '貨品',
'查詢', '搜尋', '找', '庫存', '存貨', '價格', '多少錢',
'貓砂', '狗糧', '寵物', '食品', '用品', '貓', '狗', '寵物用品',
'cat', 'dog', 'pet', 'litter', 'food' # 英文關鍵字
]
# 推薦查詢關鍵字
recommendation_keywords = ['推薦', '建議', '介紹', '有什麼', '哪些', '什麼好', '推薦一些']
# 庫存查詢關鍵字
inventory_keywords = ['庫存', '存貨', '剩餘', '還有', '現貨', '有多少', '剩多少']
is_product_query = any(keyword in message_lower for keyword in product_keywords)
is_recommendation = any(keyword in message_lower for keyword in recommendation_keywords)
is_inventory_check = any(keyword in message_lower for keyword in inventory_keywords)
confidence = 0.5
if is_product_query:
confidence += 0.3
if is_recommendation:
confidence += 0.2
if is_inventory_check:
confidence += 0.2
return {
"is_product_query": is_product_query,
"is_recommendation": is_recommendation,
"is_inventory_check": is_inventory_check,
"confidence": min(confidence, 1.0),
"intent": "product_query" if is_product_query else "unknown"
}
def _format_product_response(self, products: List[Dict[str, Any]], intent_analysis: Dict[str, Any]) -> str:
"""格式化商品查詢回應"""
if not products:
return "沒有找到相關商品。"
# 根據意圖類型調整回應風格
if intent_analysis["is_recommendation"]:
header = f"為您推薦 {len(products)} 個商品:"
elif intent_analysis["is_inventory_check"]:
header = f"庫存查詢結果,找到 {len(products)} 個商品:"
else:
header = f"商品搜尋結果,找到 {len(products)} 個商品:"
response_lines = [header, ""]
for i, product in enumerate(products[:5], 1): # 最多顯示5個
name = product.get('product_name', 'N/A')
stock = product.get('current_stock', 0)
category = product.get('category_name', '')
warehouse = product.get('warehouse', '')
# 庫存狀態
stock_status = product.get('stock_status', self._get_stock_status_text(stock))
line = f"{i}. {name}"
if category:
line += f" ({category})"
line += f"\n 庫存: {stock} - {stock_status}"
if warehouse:
line += f"\n 倉庫: {warehouse}"
if product.get('recommendation_reason'):
line += f"\n 推薦原因: {product['recommendation_reason']}"
response_lines.append(line)
if len(products) > 5:
response_lines.append(f"\n... 還有 {len(products) - 5} 個商品")
# 添加庫存提醒
low_stock_count = sum(1 for p in products if p.get('current_stock', 0) <= 10)
if low_stock_count > 0:
response_lines.append(f"\n⚠️ 其中 {low_stock_count} 個商品庫存偏低,建議盡快補貨。")
return "\n".join(response_lines)
def _get_stock_status_text(self, stock: int) -> str:
"""獲取庫存狀態文字"""
if stock <= 0:
return "缺貨 ❌"
elif stock <= 5:
return "庫存極低 🔴"
elif stock <= 10:
return "庫存偏低 🟡"
elif stock <= 50:
return "庫存正常 🟢"
else:
return "庫存充足 ✅"
def _extract_keywords_from_message(self, message: str) -> List[str]:
"""從訊息中提取關鍵字"""
# 移除常見的查詢詞彙
stop_words = ['推薦', '有沒有', '是否有', '請問', '想要', '需要', '找', '查詢', '搜尋', '?', '?']
# 分割並清理關鍵字
words = message.replace('?', '').replace('?', '').split()
keywords = [word for word in words if word not in stop_words and len(word) > 1]
return keywords if keywords else [message.strip()]
|