File size: 2,024 Bytes
3cbf1d1
 
8981abe
3cbf1d1
 
8981abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbf1d1
4ec6290
8981abe
 
 
 
 
 
 
 
 
 
 
4ec6290
8981abe
 
 
 
 
 
 
 
3cbf1d1
8981abe
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
import torch
import yolov7


# Images
torch.hub.download_url_to_file('https://github.com/Michael-OvO/Burn-Detection-Classification/blob/main/inference/images/1st_degree_1.jpg', '1st_degree_1.jpg')
torch.hub.download_url_to_file('https://github.com/Michael-OvO/Burn-Detection-Classification/blob/main/inference/images/3rd_degree_1.jpg', '3rd_degree_1.jpg')
    
def yolov7_inference(
    image: gr.inputs.Image = None,
    model_path: gr.inputs.Dropdown = None,
    image_size: gr.inputs.Slider = 640,
    conf_threshold: gr.inputs.Slider = 0.25,
    iou_threshold: gr.inputs.Slider = 0.45,
):
    """
    YOLOv7 inference function
    Args:
        image: Input image
        model_path: Path to the model
        image_size: Image size
        conf_threshold: Confidence threshold
        iou_threshold: IOU threshold
    Returns:
        Rendered image
    """

    model = torch.hub.load('kadirnar/yolov7-v0.1', 'custom', path='skin_burn.pt', source='local', hf_model=True, device="cpu")
    model.conf = conf_threshold
    model.iou = iou_threshold
    results = model([image], size=image_size)
    return results.render()[0]
        

inputs = [
    gr.inputs.Image(type="pil", label="Input Image"),
    gr.inputs.Dropdown(
        choices=[
            "skin_burn",
            "Other"
        ],
        default="skin_burn",
        label="Model",
    ),
    gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
    gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
    gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]

outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors"

demo_app = gr.Interface(
    fn=yolov7_inference,
    inputs=inputs,
    outputs=outputs,
    title=title,
    theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)