File size: 5,759 Bytes
3ed80a5
 
 
 
 
 
 
b0a0e6f
3ed80a5
 
 
bba17cc
 
3ed80a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bba17cc
3ed80a5
 
 
 
 
 
b0a0e6f
3ed80a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a0e6f
3ed80a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bba17cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed80a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bba17cc
 
3ed80a5
 
bba17cc
 
3ed80a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import gradio as gr

import torch
import numpy as np
from PIL import Image
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler

MAX_IMAGES = 1


def generate_images(

    type1: str,

    type2: str,

    hp_num: int,

    attack_num: int,

    defense_num: int,

    sp_attack_num: int,

    sp_defense_num: int,

    speed_num: int,

) -> list:
    """Generates a sprite based on the input stats.



    Parameters

    ----------



    Returns

    -------

    list

        List of PIL images.

    """
    # Initalize the images list
    images_list = []
    # Calculate the base total
    base_total = (
        hp_num + attack_num + defense_num + sp_attack_num + sp_defense_num + speed_num
    )
    # Create the text prompt
    prompt = f"type1: {type1}, type2: {type2}, base_total: {base_total}, hp: {hp_num}, attack: {attack_num}, defense: {defense_num}, sp_attack: {sp_attack_num}, sp_defense: {sp_defense_num}, speed: {speed_num}"
    # Generate the images
    for _ in range(MAX_IMAGES):
        image = pipe(
            prompt,
            height=288,
            width=288,
            num_inference_steps=10,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": 1.0},
        ).images[0]
        images_list.append(Image.fromarray(np.array(image)))

    return images_list


# Create the demo interface
demo = gr.Blocks()

# Set the models to load
model_base = "stabilityai/stable-diffusion-2-base"
lora_model_path = "michaelriedl/MonsterForgeFusion-sd-2-base"

# Create the pipeline
pipe = StableDiffusionPipeline.from_pretrained(
    model_base, torch_dtype=torch.float32, use_safetensors=False, local_files_only=False
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.unet.load_attn_procs(lora_model_path)

# Create the interface
with demo:
    gr.HTML(
        """

        <div style="text-align: center; margin: 0 auto;">

            <p style="margin-bottom: 14px; line-height: 23px;">

                Gradio demo for MonsterForgeFusion models. This was built with LoRA fine-tuning of Stable Diffusion models.

            </p>

        </div>

        """
    )
    with gr.Column():
        with gr.Row():
            gallery = gr.Gallery(
                columns=MAX_IMAGES, preview=True, object_fit="scale-down"
            )
        with gr.Row():
            type1 = gr.Dropdown(
                [
                    "bug",
                    "dark",
                    "dragon",
                    "electric",
                    "fairy",
                    "fighting",
                    "fire",
                    "flying",
                    "ghost",
                    "grass",
                    "ground",
                    "ice",
                    "normal",
                    "poison",
                    "psychic",
                    "rock",
                    "steel",
                    "water",
                ],
                value="steel",
                label="Type 1",
            )
            type2 = gr.Dropdown(
                [
                    "bug",
                    "dark",
                    "dragon",
                    "electric",
                    "fairy",
                    "fighting",
                    "fire",
                    "flying",
                    "ghost",
                    "grass",
                    "ground",
                    "ice",
                    "normal",
                    "poison",
                    "psychic",
                    "rock",
                    "steel",
                    "water",
                ],
                value="fire",
                label="Type 2",
            )
        with gr.Row():
            hp_num = gr.Slider(
                minimum=1,
                maximum=100,
                value=50,
                step=1,
                label="HP",
            )
            attack_num = gr.Slider(
                minimum=1,
                maximum=100,
                value=50,
                step=1,
                label="Attack",
            )
        with gr.Row():
            defense_num = gr.Slider(
                minimum=1,
                maximum=100,
                value=50,
                step=1,
                label="Defense",
            )
            sp_attack_num = gr.Slider(
                minimum=1,
                maximum=100,
                value=50,
                step=1,
                label="Special Attack",
            )
        with gr.Row():
            sp_defense_num = gr.Slider(
                minimum=1,
                maximum=100,
                value=50,
                step=1,
                label="Special Defense",
            )
            speed_num = gr.Slider(
                minimum=1,
                maximum=100,
                value=50,
                step=1,
                label="Speed",
            )
        gen_btn = gr.Button("Generate")
        gen_btn.click(
            fn=generate_images,
            inputs=[
                type1,
                type2,
                hp_num,
                attack_num,
                defense_num,
                sp_attack_num,
                sp_defense_num,
                speed_num,
            ],
            outputs=gallery,
        )
    gr.HTML(
        """

        <div class="footer">

            <div style='text-align: center;'>MonsterForgeFusion by <a href='https://michaelriedl.com/' target='_blank'>Michael Riedl</a></div>

        </div>

        """
    )

# Launch the interface
demo.launch()