File size: 8,561 Bytes
6f82d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2DoubleHeadsModel
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from types import MethodType

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')


def get_model(device='cpu', gpt2_name='gpt2', in_net=False, in_net_init_identity=True, out_net=False, out_net_init_identity=True, freeze_ln=False, freeze_pos=True,
              freeze_wte=True, freeze_ff=True, freeze_attn=True, dup_lm_head=False, dup_lm_head_bias=False):

    # ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']
    model = GPT2LMHeadModel.from_pretrained(gpt2_name).to(device)
    # model = GPT2DoubleHeadsModel.from_pretrained('gpt2')

    """
    Initialize linear input layer
    """

    in_layer_sizes = []
    out_layer_sizes = []
    input_dim = model.config.n_embd
    dropout = 0.1
    orth_gain = 1.41
    # orth_gain = None
    in_net_init_identity = True

    #Model - in_net
    if in_net:
        in_layers = []
        last_output_size = input_dim

        for size in in_layer_sizes:
            layer = nn.Linear(last_output_size, size)
            if orth_gain is not None:
                torch.nn.init.orthogonal_(layer.weight, gain=orth_gain)
            layer.bias.data.zero_()

            in_layers.append(layer)
            in_layers.append(nn.ReLU())
            in_layers.append(nn.Dropout(dropout))
            last_output_size = size

        in_final_linear = nn.Linear(last_output_size, model.config.n_embd)
        # if orth_gain is not None:
        #     torch.nn.init.orthogonal_(in_final_linear.weight, gain=orth_gain)
        # in_final_linear.bias.data.zero_()

        # Initialize final_linear layer to identity transformation
        if in_net_init_identity:
            nn.init.eye_(in_final_linear.weight)
            in_final_linear.bias.data.zero_()

        in_layers.append(in_final_linear)
        in_layers.append(nn.Dropout(dropout))

        model.in_net = nn.Sequential(*in_layers)

        model.in_net.requires_grad = True

    """
    Initialize linear output layer
    """
    if out_net:
        output_dim = model.config.n_embd
        out_layers = []
        last_output_size = model.config.n_embd
        for size in out_layer_sizes:
            out_layers.append(nn.Linear(last_output_size, size))
            out_layers.append(nn.ReLU())
            out_layers.append(nn.Dropout(dropout))
            last_output_size = size

        out_final_linear = nn.Linear(last_output_size, output_dim)

        if out_net_init_identity:
            nn.init.eye_(out_final_linear.weight)
            out_final_linear.bias.data.zero_()

        out_layers.append(out_final_linear)
        model.out_net = nn.Sequential(*out_layers)

        model.out_net.requires_grad = True

    """
    out layer on top of lm_head
    """
    # out_net_top = nn.Linear(model.config.vocab_size, model.config.vocab_size)
    # nn.init.eye_(out_net_top.weight)
    # model.out_net_top = out_net_top
    # model.out_net_top.requires_grad = True

    if dup_lm_head:
        lm_head_new = nn.Linear(model.config.n_embd,
                                model.config.vocab_size, bias=dup_lm_head_bias)
        lm_head_new.weight = torch.nn.Parameter(
            model.lm_head.weight.data.detach().clone(), requires_grad=True)
        # lm_head_new.bias.data.zero_()
        model.lm_head_new = lm_head_new
        model.lm_head_new.requires_grad = True

    """
    Freeze transformer layers
    """

    total_parameters = 0
    target_parameters = 0

    for name, p in model.transformer.named_parameters():
        name = name.lower()

        size = p.size()
        param_count = 1
        for dimension in size:
            param_count *= dimension

        total_parameters += param_count

        if 'ln' in name or 'norm' in name:
            p.requires_grad = not freeze_ln
        elif 'wpe' in name or 'position_embeddings' in name or 'pos_drop' in name:
            p.requires_grad = not freeze_pos
            target_parameters += param_count
        elif 'mlp' in name:
            p.requires_grad = not freeze_ff
        elif 'attn' in name:
            p.requires_grad = not freeze_attn
        elif 'wte' in name:
            p.requires_grad = not freeze_wte
        else:
            p.requires_grad = False

    # print(f'Total params: {total_parameters}')
    # print(
    #     f'Target params: {target_parameters} ({target_parameters / total_parameters * 100:.2f}%)')

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
            ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Convert from input ids to word embeddings so that we can apply a linear layer
        x = self.transformer.wte(input_ids)

        try:
            x = self.in_net(x)
        except AttributeError:
            pass

        transformer_outputs = self.transformer(
            inputs_embeds=x,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs
        )
        hidden_states = transformer_outputs[0]

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.transformer.first_device)
            hidden_states = hidden_states.to(self.lm_head.weight.device)

        try:
            hidden_states = self.out_net(hidden_states)
        except AttributeError:
            pass

        try:
            lm_logits = self.lm_head_new(hidden_states)
        except AttributeError:
            lm_logits = self.lm_head(hidden_states)

        # lm_logits = self.out_net_top(lm_logits)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )

    model.forward = MethodType(forward, model)

    return model


# model = get_model()
'''
    only for testing purpose
'''
if __name__ == "__main__":
    model = get_model(gpt2_name='gpt2', in_net=False, in_net_init_identity=True, out_net=False, out_net_init_identity=False, freeze_ln=True, freeze_pos=True,
                      freeze_wte=True, freeze_ff=True, freeze_attn=True)
    for name, p in model.named_parameters():
        if p.requires_grad:
            print(name, p.requires_grad)

    for p in model.lm_head_new.parameters():
        print('lm_head_new', p)

    # for p in model.out_net.parameters():
    #     print('out_net',p)