Spaces:
Running
Running
File size: 4,668 Bytes
846e270 9cf8e68 846e270 9cf8e68 2b7833d 422bdb2 9cf8e68 846e270 9cf8e68 846e270 9cf8e68 2b7833d 80d8ba4 9cf8e68 846e270 9cf8e68 846e270 9cf8e68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import os
from dotenv import find_dotenv, load_dotenv
import streamlit as st
from typing import Generator
from groq import Groq
st.set_page_config(page_icon="π¬", layout="wide", page_title="Groq Chat Bot...")
_ = load_dotenv(find_dotenv())
GA_TRACKING_ID = os.environ['GA_TRACKING_ID']
# insert Google Analytics
st.components.v1.html(
f"""
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id={GA_TRACKING_ID}"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){{dataLayer.push(arguments);}}
gtag('js', new Date());
gtag('config', '{GA_TRACKING_ID}');
</script>
""",
height=0,
width=0,
)
def icon(emoji: str):
"""Shows an emoji as a Notion-style page icon."""
st.write(
f'<span style="font-size: 78px; line-height: 1">{emoji}</span>',
unsafe_allow_html=True,
)
icon("π£")
st.subheader("Groq Chat Streamlit App", divider="rainbow", anchor=False)
client = Groq(
api_key=os.environ['GROQ_API_KEY'],
)
# Initialize chat history and selected model
if "messages" not in st.session_state:
st.session_state.messages = []
if "selected_model" not in st.session_state:
st.session_state.selected_model = None
# Define model details
models = {
"mixtral-8x7b-32768": {
"name": "Mixtral-8x7b-Instruct-v0.1",
"tokens": 32768,
"developer": "Mistral",
},
"llama3-70b-8192": {"name": "LLaMA3-70b-chat", "tokens": 8192, "developer": "Meta"},
"llama3-8b-8192": {"name": "LLaMA3-8b-chat", "tokens": 8192, "developer": "Meta"},
"gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"},
}
# Layout for model selection and max_tokens slider
col1, col2 = st.columns(2)
with col1:
model_option = st.selectbox(
"Choose a model:",
options=list(models.keys()),
format_func=lambda x: models[x]["name"],
index=0, # Default to the first model in the list
)
# Detect model change and clear chat history if model has changed
if st.session_state.selected_model != model_option:
st.session_state.messages = []
st.session_state.selected_model = model_option
max_tokens_range = models[model_option]["tokens"]
with col2:
# Adjust max_tokens slider dynamically based on the selected model
max_tokens = st.slider(
"Max Tokens:",
min_value=512, # Minimum value to allow some flexibility
max_value=max_tokens_range,
# Default value or max allowed if less
value=min(32768, max_tokens_range),
step=512,
help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}",
)
# Display chat messages from history on app rerun
for message in st.session_state.messages:
avatar = "π€" if message["role"] == "assistant" else "πΊ"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
def generate_chat_responses(chat_completion) -> Generator[str, None, None]:
"""Yield chat response content from the Groq API response."""
for chunk in chat_completion:
if chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
if prompt := st.chat_input("Enter your prompt here..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user", avatar="πΊ"):
st.markdown(prompt)
# Fetch response from Groq API
try:
chat_completion = client.chat.completions.create(
model=model_option,
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
max_tokens=max_tokens,
stream=True,
)
# Use the generator function with st.write_stream
with st.chat_message("assistant", avatar="π€"):
chat_responses_generator = generate_chat_responses(chat_completion)
full_response = st.write_stream(chat_responses_generator)
except Exception as e:
st.error(e, icon="π¨")
# Append the full response to session_state.messages
if isinstance(full_response, str):
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)
else:
# Handle the case where full_response is not a string
combined_response = "\n".join(str(item) for item in full_response)
st.session_state.messages.append(
{"role": "assistant", "content": combined_response}
) |