Spaces:
Runtime error
Runtime error
File size: 2,312 Bytes
5aa316f 20d1a10 804efd3 5aa316f 804efd3 5aa316f 804efd3 534fa09 5aa316f 534fa09 5aa316f 534fa09 804efd3 5aa316f 804efd3 5aa316f 534fa09 5aa316f 534fa09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as T
from PIL import Image
import gradio as gr
from featup.util import norm, unnorm, pca, remove_axes
from pytorch_lightning import seed_everything
import os
def plot_feats(image, lr, hr):
assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
seed_everything(0)
[lr_feats_pca, hr_feats_pca], _ = pca([lr.unsqueeze(0), hr.unsqueeze(0)])
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
ax[0].imshow(image.permute(1, 2, 0).detach().cpu())
ax[0].set_title("Image")
ax[1].imshow(lr_feats_pca[0].permute(1, 2, 0).detach().cpu())
ax[1].set_title("Original Features")
ax[2].imshow(hr_feats_pca[0].permute(1, 2, 0).detach().cpu())
ax[2].set_title("Upsampled Features")
remove_axes(ax)
plt.tight_layout()
plt.close(fig) # Close plt to avoid additional empty plots
return fig
if __name__ == "__main__":
os.environ['TORCH_HOME'] = '/tmp/.cache'
options = ['dino16','vit', 'dinov2', 'clip', 'resnet50']
image_input = gr.Image(label="Choose an image to featurize", type="pil", image_mode='RGB')
model_option = gr.Radio(options, value="dino16", label='Choose a backbone to upsample')
models = {o:torch.hub.load("mhamilton723/FeatUp", o) for o in options}
def upsample_features(image, model_option):
# Image preprocessing
input_size = 224
transform = T.Compose([
T.Resize(input_size),
T.CenterCrop((input_size, input_size)),
T.ToTensor(),
norm
])
image_tensor = transform(image).unsqueeze(0).cuda()
# Load the selected model
upsampler = models[model_option].cuda()
hr_feats = upsampler(image_tensor)
lr_feats = upsampler.model(image_tensor)
upsampler.cpu()
return plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
demo = gr.Interface(fn=upsample_features,
inputs=[image_input, model_option],
outputs="plot",
title="Feature Upsampling Demo",
description="This demo allows you to upsample features of an image using selected models.")
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|