File size: 4,459 Bytes
e5b9307
 
 
 
 
 
 
 
 
8479bd4
e5b9307
 
8479bd4
e5b9307
 
 
ce89e91
e5b9307
8479bd4
 
 
 
 
1d45f17
8479bd4
 
e5b9307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8479bd4
 
 
 
 
e5b9307
8479bd4
e5b9307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import deepsparse
from transformers import TextIteratorStreamer
from threading import Thread
import time
import gradio as gr
from typing import Tuple, List

deepsparse.cpu.print_hardware_capability()

MODEL_PATH = "hf:mgoin/TinyStories-1M-deepsparse"

DESCRIPTION = f"""
# {MODEL_PATH} running on DeepSparse
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 512

# Setup the engine
pipe = deepsparse.Pipeline.create(
    task="text-generation",
    model_path=MODEL_PATH,
    sequence_length=MAX_MAX_NEW_TOKENS,
    prompt_sequence_length=16,
)


def clear_and_save_textbox(message: str) -> Tuple[str, str]:
    return "", message


def display_input(
    message: str, history: List[Tuple[str, str]]
) -> List[Tuple[str, str]]:
    history.append((message, ""))
    return history


def delete_prev_fn(history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
    try:
        message, _ = history.pop()
    except IndexError:
        message = ""
    return history, message or ""


with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Group():
        chatbot = gr.Chatbot(label="Chatbot")
        with gr.Row():
            textbox = gr.Textbox(
                container=False,
                show_label=False,
                placeholder="Type a message...",
                scale=10,
            )
            submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)

    with gr.Row():
        retry_button = gr.Button("🔄  Retry", variant="secondary")
        undo_button = gr.Button("↩️ Undo", variant="secondary")
        clear_button = gr.Button("🗑️  Clear", variant="secondary")

    saved_input = gr.State()

    gr.Examples(
        examples=["Once upon a time"],
        inputs=[textbox],
    )

    max_new_tokens = gr.Slider(
        label="Max new tokens",
        minimum=1,
        maximum=MAX_MAX_NEW_TOKENS,
        step=1,
        value=DEFAULT_MAX_NEW_TOKENS,
    )
    temperature = gr.Slider(
        label="Temperature",
        minimum=0.1,
        maximum=4.0,
        step=0.1,
        value=1.0,
    )

    # Generation inference
    def generate(message, history, max_new_tokens: int, temperature: float):        
        generation_config = {"max_new_tokens": max_new_tokens, "temperature": temperature}
        inference = pipe(sequences=message, streaming=True, **generation_config)
        for token in inference:
            history[-1][1] += token.generations[0].text
            yield history

        print(pipe.timer_manager)

    # Hooking up all the buttons
    textbox.submit(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).success(
        generate,
        inputs=[saved_input, chatbot, max_new_tokens, temperature],
        outputs=[chatbot],
        api_name=False,
    )

    submit_button.click(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).success(
        generate,
        inputs=[saved_input, chatbot, max_new_tokens, temperature],
        outputs=[chatbot],
        api_name=False,
    )

    retry_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        generate,
        inputs=[saved_input, chatbot, max_new_tokens, temperature],
        outputs=[chatbot],
        api_name=False,
    )

    undo_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=lambda x: x,
        inputs=[saved_input],
        outputs=textbox,
        api_name=False,
        queue=False,
    )

    clear_button.click(
        fn=lambda: ([], ""),
        outputs=[chatbot, saved_input],
        queue=False,
        api_name=False,
    )

demo.queue().launch()