File size: 6,066 Bytes
34fbcfb
 
 
 
3172d47
 
 
 
34fbcfb
 
 
 
3172d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34fbcfb
 
 
 
3172d47
34fbcfb
 
3172d47
34fbcfb
 
3172d47
34fbcfb
 
3172d47
34fbcfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172d47
 
 
1371b6f
48392ea
3172d47
34fbcfb
48392ea
 
 
 
 
 
 
 
 
 
 
 
 
3172d47
48392ea
3172d47
48392ea
3172d47
34fbcfb
 
 
 
 
 
 
 
 
 
 
3172d47
 
34fbcfb
 
 
 
 
 
 
 
 
 
 
 
b862f6c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
import requests
import emoji
import re
import json
from thefuzz import process, fuzz
import numpy as np


API_URL = "https://api-inference.huggingface.co/models/Dabid/test2"
headers = {"Authorization": "Bearer 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"}

profanities = ['bobo', 'bwiset','gago', 'kupal',
               'pakshet', 'pakyu', 'pucha',
               'punyeta', 'puta', 'pota', 'putangina', 'tanga', 'tangina',
               'tarantado', 'ulol']

def read_text(filename, filetype='txt'):
    words = []

    if filetype == 'txt':
        with open(filename + '.txt') as file:
            words = [line.rstrip() for line in file]
            words = list(set(words))
    elif filetype == 'json':
        with open(filename + '.json') as json_file:
            words = json.load(json_file)
    
    return words


contractions = read_text('contractions', 'json')
lookup_words = read_text('lookup_words')
obj_pronouns = read_text('obj_pronouns')
profanities = read_text('profanities', 'json')


def fuzzyLookup(tweet):
    lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
    obj_pronoun  = ['ko', 'mo', 'nya', 'natin', 'namin', 'ninyo', 'nila', 'ka', 'nyo', 'ng']
    matches = dict()

    # Loop each word in tweet
    for word in tweet.split():
        scores = []
        matched_words = []
        # If word > 4 chars
        if len(word) >= 4:
            # Get fuzzy ratio
            for lookup_word in lookup_words:
                score = fuzz.ratio(word, lookup_word)
                if score >= 65:
                    scores.append(score)
                    matched_words.append(lookup_word)
            if len(scores) > 0:
                max_score_index = np.argmax(scores)
                if matched_words[max_score_index] in lookup_profanity:
                    matches[word] = matched_words[max_score_index]
                

    for word, matched_profanity in matches.items():
        word_split = word.split(matched_profanity[-2:])
        for pronoun in obj_pronoun:
            if len(word_split) > 1:
                if pronoun == word_split[-1]:
                    matches[word] = matched_profanity + ' ' + pronoun
                    break

    # Replace each profanities by fuzzy lookup result
    for word, matched_profanity in matches.items():
        tweet = tweet.replace(word, matched_profanity)

    tweet_split = tweet.split()
    for profanity, prof_varations in profanities.items():
        for i, word in enumerate(tweet_split):
            if word in prof_varations:
                tweet_split[i] = profanity
    tweet = ' '.join(tweet_split)

    return tweet, json.dumps(matches)


def preprocess(text):
    laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha']
    symbols = ['@', '#']

    # Lowercase
    text = text.lower()

    # Remove emojis
    text = emoji.replace_emoji(text, replace='')

    # Replace elongated words 'grabeee' -> 'grabe' (not applicable on 2 corresponding letter)
    text = re.sub(r'(.)\1{2,}', r'\1', text)

    # Split sentence into list of words
    row_split = text.split()

    for index, word in enumerate(row_split):

        # Remove words with symbols (e.g. @username, #hashtags)
        if any(x in word for x in symbols):
            row_split[index] = ''

        # Remove links
        if 'http' in word:
            row_split[index] = ''

        # Unify laugh texts format to 'haha'
        if any(x in word for x in laugh_texts):
            row_split[index] = 'haha'

        # Remove words with digits (4ever)
        if any(x.isdigit() for x in word):
            row_split[index] = ''

    # Combine list of words back to sentence
    combined_text = ' '.join(filter(None, row_split))

    # Check if output contains single word then return null
    if len(combined_text.split()) == 1:
        return combined_text

    # Filter needed characters
    combined_text = re.sub(r"[^A-Za-z ]+", '', combined_text)

    # Expand Contractions
    for i in contractions.items():
        combined_text = re.sub(rf"\b{i[0]}\b", i[1], combined_text)

    return combined_text


def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()


def predict(text):
    text= preprocess(text)
    text, matches = fuzzyLookup(text)
    output = query(text)
    
    if 'error' in output:
        return output['error'], 'Error occured. Try again later.', {"error": "error"}
    else:
        output = [tuple(i.values()) for i in output[0]]
        output = dict((x, y) for x, y in output)

        predicted_label = list(output.keys())[0]

        if predicted_label == 'Abusive':
            output_text = text
            for profanity in profanities:
                compiled = re.compile(re.escape(profanity), re.IGNORECASE)
                mask = ""
                for i in profanity:
                    mask += "*" if i != " " else " "
                output_text = compiled.sub(mask, output_text)
            return output, output_text, matches
        else:
            return output, text, matches
    
        # TODO gag0 not appearing


hf_writer = gr.HuggingFaceDatasetSaver('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', 'tagalog-profanity-feedbacks')


demo = gr.Interface(
    fn=predict,

    inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],

    outputs=[gr.components.Label(num_top_classes=2, label="PREDICTION"),
             gr.components.Text(label='OUTPUT'),
             gr.components.JSON()],

    examples=['Tangina mo naman sobrang yabang mo gago!!😠😤 @davidrafael',
              'Napakainit ngayong araw pakshet namaaan!!',
              'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
              'Bobo ka ba? napakadali lang nyan eh... 🤡',
              'Uy gago laptrip yung nangyare samen kanina HAHAHA😂😂'],

    allow_flagging="manual",
    flagging_callback=hf_writer,
    flagging_options=['Good bot', 'Bad bot']
)

demo.launch()