File size: 22,806 Bytes
f1cd1c6 86911ce e22139a 86911ce e22139a 86911ce e22139a a1dbeb2 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 5158329 caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 d21b959 caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a a1dbeb2 caa98a8 bf46e9b caa98a8 bf46e9b caa98a8 e22139a caa98a8 e22139a caa98a8 e22139a caa98a8 e7e593a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import os
import re
import json
import logging
import traceback
from functools import lru_cache
from typing import List, Dict, Any, Optional, TypedDict
import requests
from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langgraph.prebuilt import ToolExecutor
from langgraph.graph import StateGraph, END
# ββ Logging Configuration ββββββββββββββββββββββββββββββββββββββββββββββ
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
# ββ Environment Variables ββββββββββββββββββββββββββββββββββββββββββββββ
UMLS_API_KEY = os.getenv("UMLS_API_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
if not all([UMLS_API_KEY, GROQ_API_KEY, TAVILY_API_KEY]):
logger.error("Missing one or more required API keys: UMLS_API_KEY, GROQ_API_KEY, TAVILY_API_KEY")
raise RuntimeError("Missing required API keys")
# ββ Agent Configuration ββββββββββββββββββββββββββββββββββββββββββββββ
AGENT_MODEL_NAME = "llama3-70b-8192"
AGENT_TEMPERATURE = 0.1
MAX_SEARCH_RESULTS = 3
class ClinicalPrompts:
SYSTEM_PROMPT = """
You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation...
[SYSTEM PROMPT CONTENT HERE]
"""
# ββ Message Normalization Helpers βββββββββββββββββββββββββββββββββββββββββ
def wrap_message(msg: Any) -> AIMessage:
"""
Ensures the given message is an AIMessage.
If it is a dict, extracts the 'content' field (or serializes the dict).
Otherwise, converts the message to a string.
"""
if isinstance(msg, AIMessage):
return msg
elif isinstance(msg, dict):
return AIMessage(content=msg.get("content", json.dumps(msg)))
else:
return AIMessage(content=str(msg))
def normalize_messages(state: Dict[str, Any]) -> Dict[str, Any]:
"""
Normalizes all messages in the state to be AIMessage objects.
"""
state["messages"] = [wrap_message(m) for m in state.get("messages", [])]
return state
# ββ Helper Functions βββββββββββββββββββββββββββββββββββββββββββββββββββββ
UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
@lru_cache(maxsize=256)
def get_rxcui(drug_name: str) -> Optional[str]:
"""Lookup RxNorm CUI for a given drug name."""
drug_name = (drug_name or "").strip()
if not drug_name:
return None
logger.info(f"Looking up RxCUI for '{drug_name}'")
try:
params = {"name": drug_name, "search": 1}
r = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
r.raise_for_status()
ids = r.json().get("idGroup", {}).get("rxnormId")
if ids:
logger.info(f"Found RxCUI {ids[0]} for '{drug_name}'")
return ids[0]
r = requests.get(f"{RXNORM_API_BASE}/drugs.json", params={"name": drug_name}, timeout=10)
r.raise_for_status()
for grp in r.json().get("drugGroup", {}).get("conceptGroup", []):
props = grp.get("conceptProperties")
if props:
logger.info(f"Found RxCUI {props[0]['rxcui']} via /drugs for '{drug_name}'")
return props[0]["rxcui"]
except Exception:
logger.exception(f"Error fetching RxCUI for '{drug_name}'")
return None
@lru_cache(maxsize=128)
def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[Dict[str, Any]]:
"""Fetch the OpenFDA label for a drug by RxCUI or name."""
if not (rxcui or drug_name):
return None
terms = []
if rxcui:
terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
if drug_name:
dn = drug_name.lower()
terms.append(f'(openfda.brand_name:"{dn}" OR openfda.generic_name:"{dn}")')
query = " OR ".join(terms)
logger.info(f"Looking up OpenFDA label with query: {query}")
try:
r = requests.get(OPENFDA_API_BASE, params={"search": query, "limit": 1}, timeout=15)
r.raise_for_status()
results = r.json().get("results", [])
if results:
return results[0]
except Exception:
logger.exception("Error fetching OpenFDA label")
return None
def search_text_list(texts: List[str], terms: List[str]) -> List[str]:
"""Return highlighted snippets from a list of texts containing any of the search terms."""
snippets = []
lowers = [t.lower() for t in terms if t]
for text in texts or []:
tl = text.lower()
for term in lowers:
if term in tl:
i = tl.find(term)
start = max(0, i - 50)
end = min(len(text), i + len(term) + 100)
snippet = text[start:end]
snippet = re.sub(f"({re.escape(term)})", r"**\1**", snippet, flags=re.IGNORECASE)
snippets.append(f"...{snippet}...")
break
return snippets
def parse_bp(bp: str) -> Optional[tuple[int, int]]:
"""Parse 'SYS/DIA' blood pressure string into a (sys, dia) tuple."""
if m := re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", (bp or "").strip()):
return int(m.group(1)), int(m.group(2))
return None
def check_red_flags(patient_data: Dict[str, Any]) -> List[str]:
"""Identify immediate red flags from patient_data."""
flags: List[str] = []
hpi = patient_data.get("hpi", {})
vitals = patient_data.get("vitals", {})
syms = [s.lower() for s in hpi.get("symptoms", []) if isinstance(s, str)]
mapping = {
"chest pain": "Chest pain reported",
"shortness of breath": "Shortness of breath reported",
"severe headache": "Severe headache reported",
"syncope": "Syncope reported",
"hemoptysis": "Hemoptysis reported"
}
for term, desc in mapping.items():
if term in syms:
flags.append(f"Red Flag: {desc}.")
temp = vitals.get("temp_c")
hr = vitals.get("hr_bpm")
rr = vitals.get("rr_rpm")
spo2 = vitals.get("spo2_percent")
bp = parse_bp(vitals.get("bp_mmhg", ""))
if temp is not None and temp >= 38.5:
flags.append(f"Red Flag: Fever ({temp}Β°C).")
if hr is not None:
if hr >= 120:
flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
if hr <= 50:
flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
if rr is not None and rr >= 24:
flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
if spo2 is not None and spo2 <= 92:
flags.append(f"Red Flag: Hypoxia ({spo2}%).")
if bp:
sys, dia = bp
if sys >= 180 or dia >= 110:
flags.append(f"Red Flag: Hypertensive urgency/emergency ({sys}/{dia} mmHg).")
if sys <= 90 or dia <= 60:
flags.append(f"Red Flag: Hypotension ({sys}/{dia} mmHg).")
return list(dict.fromkeys(flags))
def format_patient_data_for_prompt(data: Dict[str, Any]) -> str:
"""Format patient_data dict into a markdown-like prompt section."""
if not data:
return "No patient data provided."
lines: List[str] = []
for section, value in data.items():
title = section.replace("_", " ").title()
if isinstance(value, dict) and any(value.values()):
lines.append(f"**{title}:**")
for k, v in value.items():
if v:
lines.append(f"- {k.replace('_',' ').title()}: {v}")
elif isinstance(value, list) and value:
lines.append(f"**{title}:** {', '.join(map(str, value))}")
elif value:
lines.append(f"**{title}:** {value}")
return "\n".join(lines)
# ββ Tool Input Schemas βββββββββββββββββββββββββββββββββββββββββββββββββββββ
class LabOrderInput(BaseModel):
test_name: str = Field(...)
reason: str = Field(...)
priority: str = Field("Routine")
class PrescriptionInput(BaseModel):
medication_name: str = Field(...)
dosage: str = Field(...)
route: str = Field(...)
frequency: str = Field(...)
duration: str = Field("As directed")
reason: str = Field(...)
class InteractionCheckInput(BaseModel):
potential_prescription: str
current_medications: Optional[List[str]] = Field(None)
allergies: Optional[List[str]] = Field(None)
class FlagRiskInput(BaseModel):
risk_description: str = Field(...)
urgency: str = Field("High")
# ββ Tool Implementations βββββββββββββββββββββββββββββββββββββββββββββββββββ
@tool("order_lab_test", args_schema=LabOrderInput)
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
"""
Place an order for a laboratory test.
"""
logger.info(f"Ordering lab test: {test_name}, reason: {reason}, priority: {priority}")
return json.dumps({
"status": "success",
"message": f"Lab Ordered: {test_name} ({priority})",
"details": f"Reason: {reason}"
})
@tool("prescribe_medication", args_schema=PrescriptionInput)
def prescribe_medication(
medication_name: str,
dosage: str,
route: str,
frequency: str,
duration: str,
reason: str
) -> str:
"""
Prepare a medication prescription.
"""
logger.info(f"Preparing prescription: {medication_name} {dosage}, route: {route}, freq: {frequency}")
return json.dumps({
"status": "success",
"message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
"details": f"Duration: {duration}. Reason: {reason}"
})
@tool("check_drug_interactions", args_schema=InteractionCheckInput)
def check_drug_interactions(
potential_prescription: str,
current_medications: Optional[List[str]] = None,
allergies: Optional[List[str]] = None
) -> str:
"""
Check for drugβdrug interactions and allergy risks.
"""
logger.info(f"Checking interactions for: {potential_prescription}")
warnings: List[str] = []
pm = [m.lower().strip() for m in (current_medications or []) if m]
al = [a.lower().strip() for a in (allergies or []) if a]
if potential_prescription.lower().strip() in al:
warnings.append(f"CRITICAL ALLERGY: Patient allergic to '{potential_prescription}'.")
rxcui = get_rxcui(potential_prescription)
label = get_openfda_label(rxcui=rxcui, drug_name=potential_prescription)
if not (rxcui or label):
warnings.append(f"INFO: Could not identify '{potential_prescription}'. Checks may be incomplete.")
for section in ("contraindications", "warnings_and_cautions", "warnings"):
items = label.get(section) if label else None
if isinstance(items, list):
snippets = search_text_list(items, al)
if snippets:
warnings.append(f"ALLERGY RISK ({section}): {'; '.join(snippets)}")
for med in pm:
mrxcui = get_rxcui(med)
mlabel = get_openfda_label(rxcui=mrxcui, drug_name=med)
for sec in ("drug_interactions",):
for src_label, src_name in ((label, potential_prescription), (mlabel, med)):
items = src_label.get(sec) if src_label else None
if isinstance(items, list):
snippets = search_text_list(items, [med if src_name == potential_prescription else potential_prescription])
if snippets:
warnings.append(f"Interaction ({src_name} label): {'; '.join(snippets)}")
status = "warning" if warnings else "clear"
message = (
f"{len(warnings)} issue(s) found for '{potential_prescription}'."
if warnings else
f"No major interactions or allergy issues identified for '{potential_prescription}'."
)
return json.dumps({"status": status, "message": message, "warnings": warnings})
@tool("flag_risk", args_schema=FlagRiskInput)
def flag_risk(risk_description: str, urgency: str = "High") -> str:
"""
Flag a clinical risk with given urgency.
"""
logger.info(f"Flagging risk: {risk_description} (urgency={urgency})")
return json.dumps({
"status": "flagged",
"message": f"Risk '{risk_description}' flagged with {urgency} urgency."
})
# ββ Include Tavily search tool βββββββββββββββββββββββββββββββββββββββββββββ
search_tool = TavilySearchResults(max_results=MAX_SEARCH_RESULTS, name="tavily_search_results")
all_tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
# ββ LLM & Tool Executor βββββββββββββββββββββββββββββββββββββββββββββββββββ
llm = ChatGroq(temperature=AGENT_TEMPERATURE, model=AGENT_MODEL_NAME)
model_with_tools = llm.bind_tools(all_tools)
tool_executor = ToolExecutor(all_tools)
# ββ State Definition βββββββββββββββββββββββββββββββββββββββββββββββββββββ
class AgentState(TypedDict):
messages: List[Any]
patient_data: Optional[Dict[str, Any]]
summary: Optional[str]
interaction_warnings: Optional[List[str]]
done: Optional[bool]
iterations: Optional[int]
# Helper to propagate state fields between nodes
def propagate_state(new: Dict[str, Any], old: Dict[str, Any]) -> Dict[str, Any]:
for key in ["iterations", "done", "patient_data", "summary", "interaction_warnings"]:
if key in old and key not in new:
new[key] = old[key]
return new
# ββ Graph Nodes βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def agent_node(state: AgentState) -> Dict[str, Any]:
state = normalize_messages(state)
if state.get("done", False):
return state
msgs = state.get("messages", [])
if not msgs or not isinstance(msgs[0], SystemMessage):
msgs = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + msgs
logger.info(f"Invoking LLM with {len(msgs)} messages")
try:
response = model_with_tools.invoke(msgs)
response = wrap_message(response)
new_state = {"messages": [response]}
return propagate_state(new_state, state)
except Exception as e:
logger.exception("Error in agent_node")
new_state = {"messages": [wrap_message(AIMessage(content=f"Error: {e}"))]}
return propagate_state(new_state, state)
def tool_node(state: AgentState) -> Dict[str, Any]:
state = normalize_messages(state)
if state.get("done", False):
return state
messages_list = state.get("messages", [])
if not messages_list:
logger.warning("tool_node invoked with no messages")
new_state = {"messages": []}
return propagate_state(new_state, state)
last = wrap_message(messages_list[-1])
tool_calls = last.__dict__.get("tool_calls")
if not (isinstance(last, AIMessage) and tool_calls):
logger.warning("tool_node invoked without pending tool_calls")
new_state = {"messages": []}
return propagate_state(new_state, state)
calls = tool_calls
blocked_ids = set()
for call in calls:
if call["name"] == "prescribe_medication":
med = call["args"].get("medication_name", "").lower()
if not any(
c["name"] == "check_drug_interactions" and
c["args"].get("potential_prescription", "").lower() == med
for c in calls
):
logger.warning(f"Blocking prescribe_medication for '{med}' without interaction check")
blocked_ids.add(call["id"])
to_execute = [c for c in calls if c["id"] not in blocked_ids]
pd = state.get("patient_data", {})
for call in to_execute:
if call["name"] == "check_drug_interactions":
call["args"].setdefault("current_medications", pd.get("medications", {}).get("current", []))
call["args"].setdefault("allergies", pd.get("allergies", []))
messages: List[ToolMessage] = []
warnings: List[str] = []
try:
responses = tool_executor.batch(to_execute, return_exceptions=True)
for call, resp in zip(to_execute, responses):
if isinstance(resp, Exception):
logger.exception(f"Error executing tool {call['name']}")
content = json.dumps({"status": "error", "message": str(resp)})
else:
content = str(resp)
if call["name"] == "check_drug_interactions":
data = json.loads(content)
if data.get("status") == "warning":
warnings.extend(data.get("warnings", []))
messages.append(ToolMessage(content=content, tool_call_id=call["id"], name=call["name"]))
except Exception as e:
logger.exception("Critical error in tool_node")
for call in to_execute:
messages.append(ToolMessage(
content=json.dumps({"status": "error", "message": str(e)}),
tool_call_id=call["id"],
name=call["name"]
))
new_state = {"messages": messages, "interaction_warnings": warnings or None}
return propagate_state(new_state, state)
def reflection_node(state: AgentState) -> Dict[str, Any]:
state = normalize_messages(state)
if state.get("done", False):
return state
warns = state.get("interaction_warnings")
if not warns:
logger.warning("reflection_node called without warnings")
new_state = {"messages": []}
return propagate_state(new_state, state)
triggering = None
for msg in reversed(state.get("messages", [])):
wrapped = wrap_message(msg)
if isinstance(wrapped, AIMessage) and wrapped.__dict__.get("tool_calls"):
triggering = wrapped
break
if not triggering:
new_state = {"messages": [AIMessage(content="Internal Error: reflection context missing.")]}
return propagate_state(new_state, state)
prompt = (
"You are SynapseAI, performing a focused safety review of the following plan:\n\n"
f"{triggering.content}\n\n"
"Highlight any issues based on these warnings:\n" +
"\n".join(f"- {w}" for w in warns)
)
try:
resp = llm.invoke([SystemMessage(content="Safety reflection"), HumanMessage(content=prompt)])
new_state = {"messages": [wrap_message(resp)]}
return propagate_state(new_state, state)
except Exception as e:
logger.exception("Error during reflection")
new_state = {"messages": [AIMessage(content=f"Error during reflection: {e}")]}
return propagate_state(new_state, state)
# ββ Routing Functions ββββββββββββββββββββββββββββββββββββββββββββββββββββ
def should_continue(state: AgentState) -> str:
state = normalize_messages(state)
state.setdefault("iterations", 0)
state["iterations"] += 1
logger.info(f"Iteration count: {state['iterations']}")
if state["iterations"] >= 4:
state.setdefault("messages", []).append(AIMessage(content="Final output: consultation complete."))
state["done"] = True
return "end_conversation_turn"
if not state.get("messages"):
state["done"] = True
return "end_conversation_turn"
last = wrap_message(state["messages"][-1])
if not isinstance(last, AIMessage):
state["done"] = True
return "end_conversation_turn"
if last.__dict__.get("tool_calls"):
return "continue_tools"
if "consultation complete" in last.content.lower():
state["done"] = True
return "end_conversation_turn"
# If no tool calls are present, terminate the conversation instead of looping.
state["done"] = True
return "end_conversation_turn"
def after_tools_router(state: AgentState) -> str:
if state.get("interaction_warnings"):
return "reflection"
return "end_conversation_turn"
# ββ ClinicalAgent βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
class ClinicalAgent:
def __init__(self):
logger.info("Building ClinicalAgent workflow")
wf = StateGraph(AgentState)
wf.add_node("start", agent_node)
wf.add_node("tools", tool_node)
wf.add_node("reflection", reflection_node)
wf.set_entry_point("start")
wf.add_conditional_edges("start", should_continue, {
"continue_tools": "tools",
"end_conversation_turn": END
})
wf.add_conditional_edges("tools", after_tools_router, {
"reflection": "reflection",
"end_conversation_turn": END
})
self.graph_app = wf.compile()
logger.info("ClinicalAgent ready")
def invoke_turn(self, state: Dict[str, Any]) -> Dict[str, Any]:
try:
result = self.graph_app.invoke(state, {"recursion_limit": 100})
result.setdefault("summary", state.get("summary"))
result.setdefault("interaction_warnings", None)
return result
except Exception as e:
logger.exception("Error during graph invocation")
return {
"messages": state.get("messages", []) + [AIMessage(content=f"Error: {e}")],
"patient_data": state.get("patient_data"),
"summary": state.get("summary"),
"interaction_warnings": None
}
|