Spaces:
Sleeping
Sleeping
File size: 30,368 Bytes
c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e e7aa85e ddeba5b e7aa85e ddeba5b c3ab38e e7aa85e c3ab38e e7aa85e ddeba5b e7aa85e c3ab38e e7aa85e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e e7aa85e c3ab38e e7aa85e ddeba5b e7aa85e c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e ddeba5b c3ab38e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
import streamlit as st
import pandas as pd
from typing import Dict, List, Optional, Any
from pydantic import BaseModel, Field
import base64
import io
import matplotlib.pyplot as plt
import seaborn as sns
from abc import ABC, abstractmethod
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller
from langchain.prompts import PromptTemplate
from groq import Groq
import os
import numpy as np
from scipy.stats import ttest_ind, f_oneway
import json
# Initialize Groq Client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# ---------------------- Base Classes and Schemas ---------------------------
class ResearchInput(BaseModel):
"""Base schema for research tool inputs"""
data_key: str = Field(..., description="Session state key containing DataFrame")
columns: Optional[List[str]] = Field(None, description="List of columns to analyze")
class TemporalAnalysisInput(ResearchInput):
"""Schema for temporal analysis"""
time_col: str = Field(..., description="Name of timestamp column")
value_col: str = Field(..., description="Name of value column to analyze")
class HypothesisInput(ResearchInput):
"""Schema for hypothesis testing"""
group_col: str = Field(..., description="Categorical column defining groups")
value_col: str = Field(..., description="Numerical column to compare")
class ModelTrainingInput(ResearchInput):
"""Schema for model training"""
target_col: str = Field(..., description="Name of target column")
class DataAnalyzer(ABC):
"""Abstract base class for data analysis modules"""
@abstractmethod
def invoke(self, **kwargs) -> Dict[str, Any]:
pass
# ---------------------- Concrete Analyzer Implementations ---------------------------
class AdvancedEDA(DataAnalyzer):
"""Comprehensive Exploratory Data Analysis"""
def invoke(self, data: pd.DataFrame, **kwargs) -> Dict[str, Any]:
try:
analysis = {
"dimensionality": {
"rows": len(data),
"columns": list(data.columns),
"memory_usage": f"{data.memory_usage().sum() / 1e6:.2f} MB"
},
"statistical_profile": data.describe(percentiles=[.25, .5, .75]).to_dict(),
"temporal_analysis": {
"date_ranges": {
col: {
"min": data[col].min(),
"max": data[col].max()
} for col in data.select_dtypes(include='datetime').columns
}
},
"data_quality": {
"missing_values": data.isnull().sum().to_dict(),
"duplicates": data.duplicated().sum(),
"cardinality": {
col: data[col].nunique() for col in data.columns
}
}
}
return analysis
except Exception as e:
return {"error": f"EDA Failed: {str(e)}"}
class DistributionVisualizer(DataAnalyzer):
"""Distribution visualizations"""
def invoke(self, data: pd.DataFrame, columns: List[str], **kwargs) -> str:
try:
plt.figure(figsize=(12, 6))
for i, col in enumerate(columns, 1):
plt.subplot(1, len(columns), i)
sns.histplot(data[col], kde=True, stat="density")
plt.title(f'Distribution of {col}', fontsize=10)
plt.xticks(fontsize=8)
plt.yticks(fontsize=8)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
plt.close()
return base64.b64encode(buf.getvalue()).decode()
except Exception as e:
return f"Visualization Error: {str(e)}"
class TemporalAnalyzer(DataAnalyzer):
"""Time series analysis"""
def invoke(self, data: pd.DataFrame, time_col: str, value_col: str, **kwargs) -> Dict[str, Any]:
try:
ts_data = data.set_index(pd.to_datetime(data[time_col]))[value_col]
decomposition = seasonal_decompose(ts_data, period=365)
plt.figure(figsize=(12, 8))
decomposition.plot()
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
plot_data = base64.b64encode(buf.getvalue()).decode()
return {
"trend_statistics": {
"stationarity": adfuller(ts_data)[1],
"seasonality_strength": max(decomposition.seasonal)
},
"visualization": plot_data
}
except Exception as e:
return {"error": f"Temporal Analysis Failed: {str(e)}"}
class HypothesisTester(DataAnalyzer):
"""Statistical hypothesis testing"""
def invoke(self, data: pd.DataFrame, group_col: str, value_col: str, **kwargs) -> Dict[str, Any]:
try:
groups = data[group_col].unique()
if len(groups) < 2:
return {"error": "Insufficient groups for comparison"}
if len(groups) == 2:
group_data = [data[data[group_col] == g][value_col] for g in groups]
stat, p = ttest_ind(*group_data)
test_type = "Independent t-test"
else:
group_data = [data[data[group_col] == g][value_col] for g in groups]
stat, p = f_oneway(*group_data)
test_type = "ANOVA"
return {
"test_type": test_type,
"test_statistic": stat,
"p_value": p,
"effect_size": {
"cohens_d": abs(group_data[0].mean() - group_data[1].mean())/np.sqrt(
(group_data[0].var() + group_data[1].var())/2
) if len(groups) == 2 else None
},
"interpretation": self.interpret_p_value(p)
}
except Exception as e:
return {"error": f"Hypothesis Testing Failed: {str(e)}"}
def interpret_p_value(self, p: float) -> str:
if p < 0.001: return "Very strong evidence against H0"
elif p < 0.01: return "Strong evidence against H0"
elif p < 0.05: return "Evidence against H0"
elif p < 0.1: return "Weak evidence against H0"
else: return "No significant evidence against H0"
class LogisticRegressionTrainer(DataAnalyzer):
"""Logistic Regression Model Trainer"""
def invoke(self, data: pd.DataFrame, target_col: str, columns: List[str], **kwargs) -> Dict[str, Any]:
try:
X = data[columns]
y = data[target_col]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return {
"model_type": "Logistic Regression",
"accuracy": accuracy,
"model_params": model.get_params()
}
except Exception as e:
return {"error": f"Logistic Regression Model Error: {str(e)}"}
# ---------------------- Groq Research Agent ---------------------------
class GroqResearcher:
"""Advanced AI Research Engine using Groq"""
def __init__(self, model_name="mixtral-8x7b-32768"):
self.model_name = model_name
self.system_template = """You are a senior data scientist at a research institution.
Analyze this dataset with rigorous statistical methods and provide academic-quality insights:
{dataset_info}
User Question: {query}
Required Format:
- Executive Summary (1 paragraph)
- Methodology (bullet points)
- Key Findings (numbered list)
- Limitations
- Recommended Next Steps"""
def research(self, query: str, data: pd.DataFrame) -> str:
"""Conduct academic-level analysis using Groq"""
try:
dataset_info = f"""
Dataset Dimensions: {data.shape}
Variables: {', '.join(data.columns)}
Temporal Coverage: {data.select_dtypes(include='datetime').columns.tolist()}
Missing Values: {data.isnull().sum().to_dict()}
"""
prompt = PromptTemplate.from_template(self.system_template).format(
dataset_info=dataset_info,
query=query
)
completion = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a research AI assistant"},
{"role": "user", "content": prompt}
],
model=self.model_name,
temperature=0.2,
max_tokens=4096,
stream=False
)
return completion.choices[0].message.content
except Exception as e:
return f"Research Error: {str(e)}"
# ---------------------- Business Logic Layer ---------------------------
class BusinessRule(BaseModel):
name: str
condition: str
action: str
class BusinessRulesEngine():
def __init__(self):
self.rules: Dict[str, BusinessRule] = {}
def add_rule(self, rule: BusinessRule):
self.rules[rule.name] = rule
def execute_rules(self, data: pd.DataFrame):
results = {}
for rule_name, rule in self.rules.items():
try:
if eval(rule.condition, {}, {"df":data}):
results[rule_name] = {"rule_matched": True, "action": rule.action}
else:
results[rule_name] = {"rule_matched": False, "action": None}
except Exception as e:
results[rule_name] = {"rule_matched": False, "error": str(e)}
return results
class KPI(BaseModel):
name: str
calculation: str
threshold: Optional[float] = None
class KPIMonitoring():
def __init__(self):
self.kpis : Dict[str, KPI] = {}
def add_kpi(self, kpi:KPI):
self.kpis[kpi.name] = kpi
def calculate_kpis(self, data: pd.DataFrame):
results = {}
for kpi_name, kpi in self.kpis.items():
try:
results[kpi_name] = eval(kpi.calculation, {}, {"df": data})
except Exception as e:
results[kpi_name] = {"error": str(e)}
return results
class ForecastingEngine(ABC):
@abstractmethod
def predict(self, data: pd.DataFrame, **kwargs) -> pd.DataFrame:
pass
class SimpleForecasting(ForecastingEngine):
def predict(self, data: pd.DataFrame, period: int = 7, **kwargs) -> pd.DataFrame:
#Placeholder for actual forecasting
return pd.DataFrame({"forecast":[f"Forecast for the next {period} days"]})
# ---------------------- Insights and Reporting Layer ---------------------------
class AutomatedInsights():
def __init__(self):
self.analyses : Dict[str, DataAnalyzer] = {
"EDA": AdvancedEDA(),
"temporal": TemporalAnalyzer(),
"distribution": DistributionVisualizer(),
"hypothesis": HypothesisTester(),
"model": LogisticRegressionTrainer()
}
def generate_insights(self, data: pd.DataFrame, analysis_names: List[str], **kwargs):
results = {}
for name in analysis_names:
if name in self.analyses:
analyzer = self.analyses[name]
results[name] = analyzer.invoke(data=data, **kwargs)
else:
results[name] = {"error": "Analysis not found"}
return results
class Dashboard():
def __init__(self):
self.layout: Dict[str,str] = {}
def add_visualisation(self, vis_name: str, vis_type: str):
self.layout[vis_name] = vis_type
def display_dashboard(self, data_dict: Dict[str,pd.DataFrame]):
st.header("Dashboard")
for vis_name, vis_type in self.layout.items():
st.subheader(vis_name)
if vis_type == "table":
if vis_name in data_dict:
st.table(data_dict[vis_name])
else:
st.write("Data Not Found")
elif vis_type == "plot":
if vis_name in data_dict:
df = data_dict[vis_name]
if len(df.columns) > 1:
fig = plt.figure()
sns.lineplot(data=df)
st.pyplot(fig)
else:
st.write("Please have more than 1 column")
else:
st.write("Data not found")
class AutomatedReports():
def __init__(self):
self.report_definition: Dict[str,str] = {}
def create_report_definition(self, report_name: str, definition: str):
self.report_definition[report_name] = definition
def generate_report(self, report_name: str, data:Dict[str, pd.DataFrame]):
if report_name not in self.report_definition:
return {"error":"Report name not found"}
st.header(f"Report : {report_name}")
st.write(f"Report Definition: {self.report_definition[report_name]}")
for df_name, df in data.items():
st.subheader(f"Data: {df_name}")
st.table(df)
# ---------------------- Data Acquisition Layer ---------------------------
class DataSource(ABC):
"""Base class for data sources."""
@abstractmethod
def connect(self) -> None:
"""Connect to the data source."""
pass
@abstractmethod
def fetch_data(self, query: str, **kwargs) -> pd.DataFrame:
"""Fetch the data based on a specific query."""
pass
class CSVDataSource(DataSource):
"""Data source for CSV files."""
def __init__(self, file_path: str):
self.file_path = file_path
self.data: Optional[pd.DataFrame] = None
def connect(self):
self.data = pd.read_csv(self.file_path)
def fetch_data(self, query: str = None, **kwargs) -> pd.DataFrame:
if self.data is None:
raise Exception("No connection is made, call connect()")
return self.data
class DatabaseSource(DataSource):
def __init__(self, connection_string: str, database_type: str):
self.connection_string = connection_string
self.database_type = database_type
self.connection = None
def connect(self):
if self.database_type.lower() == "sql":
#Placeholder for the actual database connection
self.connection = "Connected to SQL Database"
else:
raise Exception(f"Database type '{self.database_type}' is not supported")
def fetch_data(self, query: str, **kwargs) -> pd.DataFrame:
if self.connection is None:
raise Exception("No connection is made, call connect()")
#Placeholder for the data fetching
return pd.DataFrame({"result":[f"Fetched data based on query: {query}"]})
class DataIngestion:
def __init__(self):
self.sources : Dict[str, DataSource] = {}
def add_source(self, source_name: str, source: DataSource):
self.sources[source_name] = source
def ingest_data(self, source_name: str, query: str = None, **kwargs) -> pd.DataFrame:
if source_name not in self.sources:
raise Exception(f"Source '{source_name}' not found")
source = self.sources[source_name]
source.connect()
return source.fetch_data(query, **kwargs)
class DataModel(BaseModel):
name : str
kpis : List[str] = Field(default_factory=list)
dimensions : List[str] = Field(default_factory=list)
custom_calculations : Optional[Dict[str, str]] = None
relations: Optional[Dict[str,str]] = None #Example {table1: table2}
def to_json(self):
return json.dumps(self.dict())
@staticmethod
def from_json(json_str):
return DataModel(**json.loads(json_str))
class DataModelling():
def __init__(self):
self.models : Dict[str, DataModel] = {}
def add_model(self, model:DataModel):
self.models[model.name] = model
def get_model(self, model_name: str) -> DataModel:
if model_name not in self.models:
raise Exception(f"Model '{model_name}' not found")
return self.models[model_name]
# ---------------------- Main Streamlit Application ---------------------------
def main():
st.set_page_config(page_title="AI BI Automation Platform", layout="wide")
st.title("π AI-Powered Business Intelligence Automation Platform")
# Session State
if 'data' not in st.session_state:
st.session_state.data = {} # store pd.DataFrame under a name
if 'data_ingestion' not in st.session_state:
st.session_state.data_ingestion = DataIngestion()
if 'data_modelling' not in st.session_state:
st.session_state.data_modelling = DataModelling()
if 'business_rules' not in st.session_state:
st.session_state.business_rules = BusinessRulesEngine()
if 'kpi_monitoring' not in st.session_state:
st.session_state.kpi_monitoring = KPIMonitoring()
if 'forecasting_engine' not in st.session_state:
st.session_state.forecasting_engine = SimpleForecasting()
if 'automated_insights' not in st.session_state:
st.session_state.automated_insights = AutomatedInsights()
if 'dashboard' not in st.session_state:
st.session_state.dashboard = Dashboard()
if 'automated_reports' not in st.session_state:
st.session_state.automated_reports = AutomatedReports()
if 'researcher' not in st.session_state:
st.session_state.researcher = GroqResearcher()
# Sidebar for Data Management
with st.sidebar:
st.header("βοΈ Data Management")
data_source_selection = st.selectbox("Select Data Source Type",["CSV","SQL Database"])
if data_source_selection == "CSV":
uploaded_file = st.file_uploader("Upload research dataset (CSV)", type=["csv"])
if uploaded_file:
source_name = st.text_input("Data Source Name")
if source_name:
try:
csv_source = CSVDataSource(file_path=uploaded_file)
st.session_state.data_ingestion.add_source(source_name,csv_source)
st.success(f"Uploaded {uploaded_file.name}")
except Exception as e:
st.error(f"Error loading dataset: {e}")
elif data_source_selection == "SQL Database":
conn_str = st.text_input("Enter connection string for SQL DB")
if conn_str:
source_name = st.text_input("Data Source Name")
if source_name:
try:
sql_source = DatabaseSource(connection_string=conn_str, database_type="sql")
st.session_state.data_ingestion.add_source(source_name, sql_source)
st.success(f"Added SQL DB Source {source_name}")
except Exception as e:
st.error(f"Error loading database source {e}")
if st.button("Ingest Data"):
if st.session_state.data_ingestion.sources:
source_name_to_fetch = st.selectbox("Select Data Source to Ingest", list(st.session_state.data_ingestion.sources.keys()))
query = st.text_area("Optional Query to Fetch data")
if source_name_to_fetch:
with st.spinner("Ingesting data..."):
try:
data = st.session_state.data_ingestion.ingest_data(source_name_to_fetch, query)
st.session_state.data[source_name_to_fetch] = data
st.success(f"Ingested data from {source_name_to_fetch}")
except Exception as e:
st.error(f"Ingestion failed: {e}")
else:
st.error("No data source added, please add data source")
if st.session_state.data:
col1, col2 = st.columns([1, 3])
with col1:
st.subheader("Dataset Metadata")
data_source_keys = list(st.session_state.data.keys())
selected_data_key = st.selectbox("Select Dataset", data_source_keys)
if selected_data_key:
data = st.session_state.data[selected_data_key]
st.json({
"Variables": list(data.columns),
"Time Range": {
col: {
"min": data[col].min(),
"max": data[col].max()
} for col in data.select_dtypes(include='datetime').columns
},
"Size": f"{data.memory_usage().sum() / 1e6:.2f} MB"
})
with col2:
analysis_tab, business_logic_tab, insights_tab, reports_tab, custom_research_tab = st.tabs([
"Data Analysis",
"Business Logic",
"Insights",
"Reports",
"Custom Research"
])
with analysis_tab:
if selected_data_key:
analysis_type = st.selectbox("Select Analysis Mode", [
"Exploratory Data Analysis",
"Temporal Pattern Analysis",
"Comparative Statistics",
"Distribution Analysis",
"Train Logistic Regression Model"
])
data = st.session_state.data[selected_data_key]
if analysis_type == "Exploratory Data Analysis":
analyzer = AdvancedEDA()
eda_result = analyzer.invoke(data=data)
st.subheader("Data Quality Report")
st.json(eda_result)
elif analysis_type == "Temporal Pattern Analysis":
time_col = st.selectbox("Temporal Variable",
data.select_dtypes(include='datetime').columns)
value_col = st.selectbox("Analysis Variable",
data.select_dtypes(include=np.number).columns)
if time_col and value_col:
analyzer = TemporalAnalyzer()
result = analyzer.invoke(data=data, time_col=time_col, value_col=value_col)
if "visualization" in result:
st.image(f"data:image/png;base64,{result['visualization']}")
st.json(result)
elif analysis_type == "Comparative Statistics":
group_col = st.selectbox("Grouping Variable",
data.select_dtypes(include='category').columns)
value_col = st.selectbox("Metric Variable",
data.select_dtypes(include=np.number).columns)
if group_col and value_col:
analyzer = HypothesisTester()
result = analyzer.invoke(data=data, group_col=group_col, value_col=value_col)
st.subheader("Statistical Test Results")
st.json(result)
elif analysis_type == "Distribution Analysis":
num_cols = data.select_dtypes(include=np.number).columns.tolist()
selected_cols = st.multiselect("Select Variables", num_cols)
if selected_cols:
analyzer = DistributionVisualizer()
img_data = analyzer.invoke(data=data, columns=selected_cols)
st.image(f"data:image/png;base64,{img_data}")
elif analysis_type == "Train Logistic Regression Model":
num_cols = data.select_dtypes(include=np.number).columns.tolist()
target_col = st.selectbox("Select Target Variable",
data.columns.tolist())
selected_cols = st.multiselect("Select Feature Variables", num_cols)
if selected_cols and target_col:
analyzer = LogisticRegressionTrainer()
result = analyzer.invoke(data=data, target_col=target_col, columns=selected_cols)
st.subheader("Logistic Regression Model Results")
st.json(result)
with business_logic_tab:
st.header("Business Logic")
st.subheader("Data Modelling")
model_name = st.text_input("Enter the name of the model")
if model_name:
kpis = st.text_input("Enter KPIs (comma-separated)")
dimensions = st.text_input("Enter Dimensions (comma-separated)")
custom_calculations = st.text_area("Custom calculations (JSON format), use {'df': DataFrame}")
relations = st.text_area("Relations (JSON format), use {'table1': 'table2'}")
if st.button("Add Data Model"):
try:
custom_calculations_dict = None if not custom_calculations else json.loads(custom_calculations)
relations_dict = None if not relations else json.loads(relations)
model = DataModel(name=model_name,
kpis= [kpi.strip() for kpi in kpis.split(',')] if kpis else [],
dimensions=[dim.strip() for dim in dimensions.split(',')] if dimensions else [],
custom_calculations= custom_calculations_dict,
relations = relations_dict)
st.session_state.data_modelling.add_model(model)
st.success(f"Added data model {model_name}")
except Exception as e:
st.error(f"Error creating data model: {e}")
st.subheader("Business Rules")
rule_name = st.text_input("Enter Rule Name")
condition = st.text_area("Enter Rule Condition (use 'df' for data frame), Example df['sales'] > 100")
action = st.text_area("Enter Action to be Taken on Rule Match")
if st.button("Add Business Rule"):
try:
rule = BusinessRule(name=rule_name, condition=condition, action=action)
st.session_state.business_rules.add_rule(rule)
st.success("Added Business Rule")
except Exception as e:
st.error(f"Error in rule definition: {e}")
st.subheader("KPI Definition")
kpi_name = st.text_input("Enter KPI name")
kpi_calculation = st.text_area("Enter KPI calculation (use 'df' for data frame), Example df['revenue'].sum()")
threshold = st.text_input("Enter Threshold for KPI")
if st.button("Add KPI"):
try:
threshold_value = float(threshold) if threshold else None
kpi = KPI(name=kpi_name, calculation=kpi_calculation, threshold=threshold_value)
st.session_state.kpi_monitoring.add_kpi(kpi)
st.success(f"Added KPI {kpi_name}")
except Exception as e:
st.error(f"Error creating KPI: {e}")
if selected_data_key:
data = st.session_state.data[selected_data_key]
if st.button("Execute Business Rules"):
with st.spinner("Executing Business Rules.."):
result = st.session_state.business_rules.execute_rules(data)
st.json(result)
if st.button("Calculate KPIs"):
with st.spinner("Calculating KPIs..."):
result = st.session_state.kpi_monitoring.calculate_kpis(data)
st.json(result)
with insights_tab:
if selected_data_key:
data = st.session_state.data[selected_data_key]
available_analysis = ["EDA", "temporal", "distribution", "hypothesis", "model"]
selected_analysis = st.multiselect("Select Analysis", available_analysis)
if st.button("Generate Automated Insights"):
with st.spinner("Generating Insights"):
results = st.session_state.automated_insights.generate_insights(data, analysis_names=selected_analysis)
st.json(results)
with reports_tab:
st.header("Reports")
report_name = st.text_input("Report Name")
report_def = st.text_area("Report definition")
if st.button("Create Report Definition"):
st.session_state.automated_reports.create_report_definition(report_name, report_def)
st.success("Report definition created")
if selected_data_key:
data = st.session_state.data
if st.button("Generate Report"):
with st.spinner("Generating Report..."):
report = st.session_state.automated_reports.generate_report(report_name, data)
with custom_research_tab:
research_query = st.text_area("Enter Research Question:", height=150,
placeholder="E.g., 'What factors are most predictive of X outcome?'")
if st.button("Execute Custom Research"):
with st.spinner("Conducting rigorous analysis..."):
if selected_data_key:
data = st.session_state.data[selected_data_key]
result = st.session_state.researcher.research(
research_query, data
)
st.markdown("## Research Findings")
st.markdown(result)
if __name__ == "__main__":
main() |