File size: 41,416 Bytes
e22eb13 e0b9b11 4da81e5 e22eb13 990e23e 92cb699 5089920 92cb699 200c5c4 e22eb13 f13d4b2 e22eb13 a219e07 e22eb13 a219e07 f13d4b2 5089920 f13d4b2 a219e07 e22eb13 5089920 a219e07 e22eb13 5089920 e22eb13 cb93f9c e22eb13 4c2220b f13d4b2 287c9ca e22eb13 92cb699 e0b9b11 e22eb13 a219e07 e22eb13 a219e07 e22eb13 d44d308 a219e07 e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 e22eb13 cb93f9c e22eb13 200c5c4 09d5c67 e22eb13 a219e07 e22eb13 d44d308 a219e07 e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 e22eb13 cb93f9c e22eb13 cb93f9c e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 e22eb13 cb93f9c e22eb13 cb93f9c e22eb13 a219e07 cb93f9c e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 cb93f9c a219e07 e22eb13 a219e07 e22eb13 a219e07 d44d308 e22eb13 d44d308 e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 e22eb13 d44d308 e22eb13 4da81e5 e22eb13 d44d308 e22eb13 d44d308 e22eb13 a219e07 e22eb13 cb93f9c 4da81e5 e22eb13 4da81e5 e22eb13 4da81e5 e22eb13 4da81e5 e22eb13 a219e07 e22eb13 a219e07 e22eb13 cb93f9c e22eb13 cb93f9c e22eb13 cb93f9c e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 e22eb13 cb93f9c e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 cb93f9c e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 e22eb13 a219e07 cb93f9c e22eb13 5089920 e22eb13 5089920 e22eb13 cb93f9c e22eb13 cb93f9c e22eb13 4da81e5 e22eb13 59af6e7 e22eb13 4da81e5 a219e07 e22eb13 4da81e5 cb93f9c e0b9b11 e22eb13 5089920 e22eb13 cb93f9c a219e07 5089920 e22eb13 cb93f9c a219e07 e22eb13 a219e07 cb93f9c 8583908 5089920 e22eb13 cb93f9c e22eb13 cb93f9c e22eb13 cb93f9c e22eb13 cb93f9c 5089920 e22eb13 3313da9 e22eb13 cb93f9c e22eb13 59af6e7 e22eb13 cb93f9c 59af6e7 e22eb13 d44d308 e22eb13 cb93f9c e22eb13 a219e07 e22eb13 b97795f e22eb13 cb93f9c e22eb13 754c854 3313da9 4da81e5 d44d308 e22eb13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import mimetypes
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
# --- MoviePy Imports ---
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
# --- MONKEY PATCH for Pillow/MoviePy compatibility ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'): # Pillow 8
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'): # Fallback if no common resampling attributes found
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different.")
except Exception as e_monkey_patch:
print(f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}")
logger = logging.getLogger(__name__)
# Consider setting level in main app if not already configured:
# logger.setLevel(logging.DEBUG) # For very verbose output during debugging
# --- External Service Client Imports ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient
Voice = ImportedVoice
VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True
logger.info("ElevenLabs client components imported successfully.")
except ImportError:
logger.warning("ElevenLabs SDK not found (pip install elevenlabs). Audio generation will be disabled.")
except Exception as e_eleven_import:
logger.warning(f"Error importing ElevenLabs client components: {e_eleven_import}. Audio generation disabled.")
RUNWAYML_SDK_IMPORTED = False
RunwayMLAPIClient = None # Using a more specific name for the client class
try:
from runwayml import RunwayML as ImportedRunwayMLClient # Actual SDK import
RunwayMLAPIClient = ImportedRunwayMLClient
RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK imported successfully.")
except ImportError:
logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
except Exception as e_runway_sdk_import:
logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk_import}. RunwayML features disabled.")
class VisualEngine:
DEFAULT_FONT_SIZE_PIL = 10 # For default Pillow font
PREFERRED_FONT_SIZE_PIL = 20 # For custom font
VIDEO_OVERLAY_FONT_SIZE = 30
VIDEO_OVERLAY_FONT_COLOR = 'white'
# Standard font names ImageMagick (used by TextClip) is likely to find in Linux containers
DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'
PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold' # Often available
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename_pil = "DejaVuSans-Bold.ttf" # A more standard Linux font
font_paths_to_try = [
self.font_filename_pil, # If in working dir or PATH
f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil}",
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", # Alternative
f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS fallback
f"C:/Windows/Fonts/arial.ttf", # Windows fallback
f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf" # User's previous custom path
]
self.font_path_pil_resolved = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_pil = ImageFont.load_default() # Default
self.current_font_size_pil = self.DEFAULT_FONT_SIZE_PIL
if self.font_path_pil_resolved:
try:
self.font_pil = ImageFont.truetype(self.font_path_pil_resolved, self.PREFERRED_FONT_SIZE_PIL)
self.current_font_size_pil = self.PREFERRED_FONT_SIZE_PIL
logger.info(f"Pillow font loaded: {self.font_path_pil_resolved} at size {self.current_font_size_pil}.")
# Determine MoviePy font based on loaded PIL font
if "dejavu" in self.font_path_pil_resolved.lower():
self.video_overlay_font = 'DejaVu-Sans-Bold'
elif "liberation" in self.font_path_pil_resolved.lower():
self.video_overlay_font = 'Liberation-Sans-Bold'
else: # Fallback if custom font doesn't have an obvious ImageMagick name
self.video_overlay_font = self.DEFAULT_MOVIEPY_FONT
except IOError as e_font_load:
logger.error(f"Pillow font loading IOError for '{self.font_path_pil_resolved}': {e_font_load}. Using default.")
else:
logger.warning("Custom Pillow font not found. Using default.")
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_client_instance = None # More specific name
# Attempt to initialize Runway client if SDK is present and env var might be set
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient and os.getenv("RUNWAYML_API_SECRET"):
try:
self.runway_ml_client_instance = RunwayMLAPIClient() # SDK uses env var
self.USE_RUNWAYML = True # Assume enabled if client initializes
logger.info("RunwayML Client initialized from RUNWAYML_API_SECRET env var at startup.")
except Exception as e_runway_init_startup:
logger.error(f"Initial RunwayML client init failed (env var RUNWAYML_API_SECRET might be invalid): {e_runway_init_startup}")
self.USE_RUNWAYML = False
logger.info("VisualEngine initialized.")
# --- API Key Setters ---
def set_openai_api_key(self, api_key):
self.openai_api_key = api_key; self.USE_AI_IMAGE_GENERATION = bool(api_key)
logger.info(f"DALL-E ({self.dalle_model}) status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
self.elevenlabs_api_key = api_key
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
self.USE_ELEVENLABS = bool(self.elevenlabs_client)
logger.info(f"ElevenLabs Client status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})")
except Exception as e:
logger.error(f"ElevenLabs client initialization error: {e}. Service Disabled.", exc_info=True)
self.USE_ELEVENLABS = False; self.elevenlabs_client = None
else:
self.USE_ELEVENLABS = False
logger.info(f"ElevenLabs Service Disabled (API key not provided or SDK import issue).")
def set_pexels_api_key(self, api_key):
self.pexels_api_key = api_key; self.USE_PEXELS = bool(api_key)
logger.info(f"Pexels Search status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
def set_runway_api_key(self, api_key):
self.runway_api_key = api_key # Store key regardless for potential direct HTTP use
if api_key:
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
if not self.runway_ml_client_instance: # If not already initialized by env var
try:
# The RunwayML Python SDK expects the API key via the RUNWAYML_API_SECRET env var.
# If it's not set, we set it temporarily for client initialization.
original_env_secret = os.getenv("RUNWAYML_API_SECRET")
if not original_env_secret:
logger.info("Temporarily setting RUNWAYML_API_SECRET from provided key for SDK client init.")
os.environ["RUNWAYML_API_SECRET"] = api_key
self.runway_ml_client_instance = RunwayMLAPIClient()
self.USE_RUNWAYML = True # SDK client successfully initialized
logger.info("RunwayML Client initialized successfully using provided API key.")
if not original_env_secret: # Clean up if we set it
del os.environ["RUNWAYML_API_SECRET"]
logger.info("Cleared temporary RUNWAYML_API_SECRET env var.")
except Exception as e_client_init:
logger.error(f"RunwayML Client initialization via set_runway_api_key failed: {e_client_init}", exc_info=True)
self.USE_RUNWAYML = False; self.runway_ml_client_instance = None
else: # Client was already initialized (likely via env var during __init__)
self.USE_RUNWAYML = True
logger.info("RunwayML Client was already initialized (likely from env var). API key stored.")
else: # SDK not imported
logger.warning("RunwayML SDK not imported. API key stored, but integration requires SDK. Service effectively disabled.")
self.USE_RUNWAYML = False
else: # No API key provided
self.USE_RUNWAYML = False; self.runway_ml_client_instance = None
logger.info("RunwayML Service Disabled (no API key provided).")
# --- Helper Methods ---
def _image_to_data_uri(self, image_path):
try:
mime_type, _ = mimetypes.guess_type(image_path)
if not mime_type:
ext = os.path.splitext(image_path)[1].lower()
mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg"}
mime_type = mime_map.get(ext, "application/octet-stream")
if mime_type == "application/octet-stream": logger.warning(f"Could not determine MIME type for {image_path}, using default.")
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
data_uri = f"data:{mime_type};base64,{encoded_string}"
logger.debug(f"Generated data URI for {os.path.basename(image_path)} (first 100 chars): {data_uri[:100]}...")
return data_uri
except FileNotFoundError:
logger.error(f"Image file not found at {image_path} for data URI conversion.")
return None
except Exception as e:
logger.error(f"Error converting image {image_path} to data URI: {e}", exc_info=True)
return None
def _map_resolution_to_runway_ratio(self, width, height):
ratio_str = f"{width}:{height}"
# Gen-4 supports: "1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"
supported_ratios_gen4 = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"]
if ratio_str in supported_ratios_gen4:
return ratio_str
# Fallback or find closest - for now, strict matching or default
logger.warning(f"Resolution {ratio_str} not directly in Gen-4 supported list. Defaulting to 1280:720.")
return "1280:720"
def _get_text_dimensions(self, text_content, font_object):
# (Robust version from before)
default_char_height = getattr(font_object, 'size', self.current_font_size_pil)
if not text_content: return 0, default_char_height
try:
if hasattr(font_object,'getbbox'):
bbox=font_object.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
return w, h if h > 0 else default_char_height
elif hasattr(font_object,'getsize'):
w,h=font_object.getsize(text_content)
return w, h if h > 0 else default_char_height
else: return int(len(text_content)*default_char_height*0.6),int(default_char_height*1.2)
except Exception as e: logger.warning(f"Error in _get_text_dimensions: {e}"); return int(len(text_content)*self.current_font_size_pil*0.6),int(self.current_font_size_pil*1.2)
def _create_placeholder_image_content(self, text_description, filename, size=None):
# (Corrected version from previous response)
if size is None: size = self.video_frame_size
img = Image.new('RGB', size, color=(20, 20, 40)); d = ImageDraw.Draw(img); padding = 25
max_w = size[0] - (2 * padding); lines = []
if not text_description: text_description = "(Placeholder Image)"
words = text_description.split(); current_line_text = ""
for word_idx, word in enumerate(words):
prospective_addition = word + (" " if word_idx < len(words) - 1 else "")
test_line_text = current_line_text + prospective_addition
current_w, _ = self._get_text_dimensions(test_line_text, self.font_pil)
if current_w == 0 and test_line_text.strip(): current_w = len(test_line_text) * (self.current_font_size_pil * 0.6) # Estimate
if current_w <= max_w: current_line_text = test_line_text
else:
if current_line_text.strip(): lines.append(current_line_text.strip())
current_line_text = prospective_addition # Start new line
if current_line_text.strip(): lines.append(current_line_text.strip())
if not lines and text_description:
avg_char_w, _ = self._get_text_dimensions("W", self.font_pil); avg_char_w = avg_char_w or (self.current_font_size_pil * 0.6)
chars_per_line = int(max_w / avg_char_w) if avg_char_w > 0 else 20
lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
elif not lines: lines.append("(Placeholder Error)")
_, single_line_h = self._get_text_dimensions("Ay", self.font_pil); single_line_h = single_line_h if single_line_h > 0 else self.current_font_size_pil + 2
max_lines = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1
max_lines = max(1, max_lines) # Ensure at least one line
y_pos = padding + (size[1] - (2 * padding) - max_lines * (single_line_h + 2)) / 2.0
for i in range(max_lines):
line_text = lines[i]; line_w, _ = self._get_text_dimensions(line_text, self.font_pil)
if line_w == 0 and line_text.strip(): line_w = len(line_text) * (self.current_font_size_pil * 0.6)
x_pos = (size[0] - line_w) / 2.0
try: d.text((x_pos, y_pos), line_text, font=self.font_pil, fill=(200, 200, 180))
except Exception as e_draw: logger.error(f"Pillow d.text error: {e_draw} for '{line_text}'")
y_pos += single_line_h + 2
if i == 6 and max_lines > 7:
try: d.text((x_pos, y_pos), "...", font=self.font_pil, fill=(200, 200, 180))
except Exception as e_elip: logger.error(f"Pillow d.text ellipsis error: {e_elip}"); break
filepath = os.path.join(self.output_dir, filename)
try: img.save(filepath); return filepath
except Exception as e_save: logger.error(f"Saving placeholder image '{filepath}' error: {e_save}", exc_info=True); return None
def _search_pexels_image(self, query, output_filename_base):
# <<< THIS IS THE CORRECTED METHOD >>>
if not self.USE_PEXELS or not self.pexels_api_key: return None
headers = {"Authorization": self.pexels_api_key}
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
base_name_for_pexels, _ = os.path.splitext(output_filename_base)
pexels_filename = base_name_for_pexels + f"_pexels_{random.randint(1000,9999)}.jpg"
filepath = os.path.join(self.output_dir, pexels_filename)
try:
logger.info(f"Pexels: Searching for '{query}'")
effective_query = " ".join(query.split()[:5])
params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
response.raise_for_status()
data = response.json()
if data.get("photos") and len(data["photos"]) > 0:
photo_details = data["photos"][0]
photo_url = photo_details.get("src", {}).get("large2x")
if not photo_url: logger.warning(f"Pexels: 'large2x' URL missing for '{effective_query}'. Details: {photo_details}"); return None
image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
img_data_pil = Image.open(io.BytesIO(image_response.content))
if img_data_pil.mode != 'RGB': img_data_pil = img_data_pil.convert('RGB')
img_data_pil.save(filepath); logger.info(f"Pexels: Image saved to {filepath}"); return filepath
else: logger.info(f"Pexels: No photos for '{effective_query}'."); return None
except requests.exceptions.RequestException as e_req: logger.error(f"Pexels: RequestException for '{query}': {e_req}", exc_info=False); return None # Less verbose for network
except Exception as e: logger.error(f"Pexels: General error for '{query}': {e}", exc_info=True); return None
# --- RunwayML Video Generation (Gen-4 Aligned with SDK) ---
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
if not self.USE_RUNWAYML or not self.runway_ml_client_instance:
logger.warning("RunwayML not enabled or client not initialized. Cannot generate video clip.")
return None
if not input_image_path or not os.path.exists(input_image_path):
logger.error(f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}")
return None
image_data_uri = self._image_to_data_uri(input_image_path)
if not image_data_uri: return None
runway_duration = 10 if target_duration_seconds >= 8 else 5 # Map to 5s or 10s for Gen-4
runway_ratio_str = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1])
# Use a more descriptive output filename for Runway videos
base_name_for_runway, _ = os.path.splitext(scene_identifier_filename_base)
output_video_filename = base_name_for_runway + f"_runway_gen4_d{runway_duration}s.mp4"
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
logger.info(f"Initiating Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', image='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
try:
# Using the RunwayML Python SDK structure
task_submission = self.runway_ml_client_instance.image_to_video.create(
model='gen4_turbo',
prompt_image=image_data_uri,
prompt_text=text_prompt_for_motion, # This is the motion prompt
duration=runway_duration,
ratio=runway_ratio_str,
# seed=random.randint(0, 4294967295), # Optional: for reproducibility
# Other Gen-4 params (motion_score, upscale, watermark etc. can be added here if available in SDK)
)
task_id = task_submission.id
logger.info(f"Runway Gen-4 task created with ID: {task_id}. Polling for completion...")
poll_interval_seconds = 10
max_polling_duration_seconds = 6 * 60 # 6 minutes
start_time = time.time()
while time.time() - start_time < max_polling_duration_seconds:
time.sleep(poll_interval_seconds)
task_details = self.runway_ml_client_instance.tasks.retrieve(id=task_id)
logger.info(f"Runway task {task_id} status: {task_details.status}")
if task_details.status == 'SUCCEEDED':
# Determine output URL (this structure might vary based on SDK version)
output_url = None
if hasattr(task_details, 'output') and task_details.output and hasattr(task_details.output, 'url'):
output_url = task_details.output.url
elif hasattr(task_details, 'artifacts') and task_details.artifacts and isinstance(task_details.artifacts, list) and len(task_details.artifacts) > 0:
first_artifact = task_details.artifacts[0]
if hasattr(first_artifact, 'url'): output_url = first_artifact.url
elif hasattr(first_artifact, 'download_url'): output_url = first_artifact.download_url
if not output_url:
logger.error(f"Runway task {task_id} SUCCEEDED, but no output URL found. Details: {vars(task_details) if hasattr(task_details,'__dict__') else str(task_details)}")
return None
logger.info(f"Runway task {task_id} SUCCEEDED. Downloading video from: {output_url}")
video_response = requests.get(output_url, stream=True, timeout=300)
video_response.raise_for_status()
with open(output_video_filepath, 'wb') as f:
for chunk in video_response.iter_content(chunk_size=8192): f.write(chunk)
logger.info(f"Runway Gen-4 video successfully downloaded to: {output_video_filepath}")
return output_video_filepath
elif task_details.status in ['FAILED', 'ABORTED', 'ERROR']: # Added ERROR
error_msg = getattr(task_details,'error_message',None) or getattr(getattr(task_details,'output',None),'error', "Unknown error from Runway task.")
logger.error(f"Runway task {task_id} final status: {task_details.status}. Error: {error_msg}")
return None
logger.warning(f"Runway task {task_id} timed out polling after {max_polling_duration_seconds} seconds.")
return None
except AttributeError as ae: # If SDK methods are not as expected
logger.error(f"AttributeError with RunwayML SDK: {ae}. Ensure SDK is up to date and methods/attributes match documentation.", exc_info=True)
return None
except Exception as e_runway_call:
logger.error(f"General error during Runway Gen-4 API call or processing: {e_runway_call}", exc_info=True)
return None
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
# (Keeping as before)
if size is None: size = self.video_frame_size; fp = os.path.join(self.output_dir, filename); tc = None
try: tc = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=size, method='caption').set_duration(duration); tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2); logger.info(f"Generic placeholder video: {fp}"); return fp
except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None
finally:
if tc and hasattr(tc, 'close'): tc.close()
# --- generate_scene_asset (Main asset generation logic using Runway Gen-4 workflow) ---
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
scene_data, scene_identifier_filename_base,
generate_as_video_clip=False, runway_target_duration=5):
# (Logic updated for Runway Gen-4 workflow)
base_name, _ = os.path.splitext(scene_identifier_filename_base)
asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
input_image_for_runway_path = None
# Use a distinct name for the base image if it's only an intermediate step for video
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
base_image_filepath = os.path.join(self.output_dir, base_image_filename)
# STEP 1: Generate/acquire the base image
# Try DALL-E
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
# ... (DALL-E logic as in previous full rewrite - condensed for brevity here)
max_r, att_n = 2,0;
for att_n in range(max_r):
try:logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...");cl=openai.OpenAI(api_key=self.openai_api_key,timeout=90.0);r=cl.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid");iu=r.data[0].url;rp=getattr(r.data[0],'revised_prompt',None);
if rp:logger.info(f"DALL-E revised: {rp[:70]}...");ir=requests.get(iu,timeout=120);ir.raise_for_status();id_img=Image.open(io.BytesIO(ir.content));
if id_img.mode!='RGB':id_img=id_img.convert('RGB');id_img.save(base_image_filepath);logger.info(f"DALL-E base img saved: {base_image_filepath}");input_image_for_runway_path=base_image_filepath;asset_info={'path':base_image_filepath,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':rp};break
except openai.RateLimitError as e:logger.warning(f"OpenAI RateLimit {att_n+1}:{e}.Retry...");time.sleep(5*(att_n+1));asset_info['error_message']=str(e)
except Exception as e:logger.error(f"DALL-E base img error:{e}",exc_info=True);asset_info['error_message']=str(e);break
if asset_info['error']:logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")
if asset_info['error'] and self.USE_PEXELS: # Pexels Fallback
logger.info("Trying Pexels for base img.");pqt=scene_data.get('pexels_search_query_๊ฐ๋
',f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}");pp=self._search_pexels_image(pqt,base_image_filename); # Use base_image_filename
if pp:input_image_for_runway_path=pp;asset_info={'path':pp,'type':'image','error':False,'prompt_used':f"Pexels:{pqt}"}
else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Pexels failed for base.").strip()
if asset_info['error']: # Placeholder Fallback
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ppt=asset_info.get('prompt_used',image_generation_prompt_text);php=self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...",base_image_filename); # Use base_image_filename
if php:input_image_for_runway_path=php;asset_info={'path':php,'type':'image','error':False,'prompt_used':ppt}
else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Base placeholder failed.").strip()
# STEP 2: If video clip is requested, use the generated base image with RunwayML
if generate_as_video_clip:
if not input_image_for_runway_path:
logger.error("RunwayML video: base image generation failed entirely. Cannot proceed.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"")+" Base img completely failed, Runway abort.").strip();asset_info['type']='none';return asset_info
if self.USE_RUNWAYML: # This check is now more about if the service is generally enabled
video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,input_image_for_runway_path,base_name,runway_target_duration) # Pass base_name for runway output filename
if video_path and os.path.exists(video_path):asset_info={'path':video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':input_image_for_runway_path}
else:logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML video step failed; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
else:logger.warning("RunwayML selected but not enabled/client not ready. Use base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
return asset_info
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
# (Keep as before - robust enough)
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename)
try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None
if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()")
elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2");
with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
else:logger.error("No 11L audio method.");return None
if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
else:vps["voice_settings"]=self.elevenlabs_voice_settings
adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
with open(afp,"wb")as f:
for c in adi:
if c:f.write(c)
logger.info(f"11L audio (stream): {afp}");return afp
except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None
# --- assemble_animatic_from_assets (Still contains crucial debug saves for blank video issue) ---
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
# (Keep the version with robust image processing, C-contiguous arrays, debug saves, and pix_fmt)
if not asset_data_list: logger.warning("No assets for animatic."); return None
processed_clips = []; narration_clip = None; final_clip = None
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
for i, asset_info in enumerate(asset_data_list):
asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5)
scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '')
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue
if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue
current_scene_mvpy_clip = None
try:
if asset_type == 'image':
pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf)
cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2
cv_rgba.paste(thumb,(xo,yo),thumb)
final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3])
dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
frame_np = np.array(final_rgb_pil,dtype=np.uint8);
if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8)
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue
clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur)
mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
clip_fx = clip_base
try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center')
except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False)
current_scene_mvpy_clip = clip_fx
elif asset_type == 'video':
src_clip=None
try:
src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
tmp_clip=src_clip
if src_clip.duration!=scene_dur:
if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur)
else:
if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur)
else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur)
if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue
finally:
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close()
else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue
if current_scene_mvpy_clip and key_action:
try:
to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
to_start=0.25
if to_dur > 0:
txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True)
current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True)
else: logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True)
if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True)
finally:
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
try: current_scene_mvpy_clip.close()
except: pass
if not processed_clips:logger.warning("No clips processed. Abort.");return None
td=0.75
try:
logger.info(f"Concatenating {len(processed_clips)} clips.");
if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose")
elif processed_clips:final_clip=processed_clips[0]
if not final_clip:logger.error("Concatenation failed.");return None
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
if td>0 and final_clip.duration>0:
if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td)
else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0:
try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.")
except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True)
elif final_clip.duration<=0:logger.warning("Video no duration. No audio.")
if final_clip and final_clip.duration>0:
op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
logger.info(f"Video created:{op}");return op
else:logger.error("Final clip invalid. No write.");return None
except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
for clip_obj_to_close in all_clips_to_close:
if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'):
try: clip_obj_to_close.close()
except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}") |