File size: 37,727 Bytes
287c9ca
e0b9b11
92cb699
 
 
5089920
 
 
 
 
 
92cb699
 
5089920
9840152
5089920
990e23e
92cb699
 
 
 
 
5089920
92cb699
200c5c4
 
63525c7
f13d4b2
5089920
f13d4b2
5089920
 
 
f13d4b2
5089920
f13d4b2
5089920
e0b9b11
 
 
63525c7
5089920
63525c7
5089920
 
 
 
 
 
 
 
 
 
 
 
 
4c2220b
f13d4b2
287c9ca
92cb699
e0b9b11
 
5089920
3313da9
5089920
 
3313da9
 
63525c7
 
3313da9
5089920
 
 
 
e0b9b11
3313da9
 
 
 
e0b9b11
 
63525c7
 
 
3313da9
63525c7
3313da9
 
 
 
63525c7
 
e0b9b11
f02ab98
5089920
3313da9
e0b9b11
 
5089920
92cb699
5089920
 
 
e0b9b11
f02ab98
5089920
63525c7
5089920
200c5c4
09d5c67
5089920
e0b9b11
3313da9
e0b9b11
92cb699
f13d4b2
5089920
 
 
 
 
 
 
3313da9
5089920
e0b9b11
 
3313da9
5089920
 
 
63525c7
5089920
 
3313da9
63525c7
 
3313da9
63525c7
 
 
5089920
e0b9b11
3313da9
50c620f
63525c7
e0b9b11
3313da9
63525c7
e0b9b11
3313da9
 
63525c7
5089920
e0b9b11
92cb699
 
 
 
 
5089920
92cb699
29c2122
5089920
e0b9b11
63525c7
3313da9
e0b9b11
200c5c4
e0b9b11
63525c7
5089920
 
92cb699
 
 
 
5089920
92cb699
 
f13d4b2
e0b9b11
9840152
3313da9
5089920
92cb699
9840152
92cb699
 
 
f13d4b2
63525c7
92cb699
 
 
 
e0b9b11
92cb699
9840152
b97795f
5089920
 
 
 
3313da9
5089920
 
63525c7
3313da9
 
 
 
 
 
 
 
 
 
5089920
63525c7
5089920
 
 
 
 
3313da9
5089920
3313da9
 
 
5089920
 
63525c7
5089920
3313da9
5089920
 
 
 
63525c7
5089920
 
 
 
63525c7
5089920
 
 
 
63525c7
3313da9
 
5089920
3313da9
5089920
3313da9
5089920
09d5c67
3313da9
 
9d84ba9
3313da9
5089920
92cb699
 
 
 
5089920
92cb699
5089920
63525c7
3313da9
 
63525c7
 
 
3313da9
5089920
3313da9
92cb699
63525c7
5089920
63525c7
 
3313da9
 
 
63525c7
3313da9
 
 
63525c7
 
 
3313da9
 
 
 
29c2122
e0b9b11
f13d4b2
3313da9
f13d4b2
9840152
 
754c854
5089920
200c5c4
63525c7
 
 
5089920
 
63525c7
 
 
 
5089920
3313da9
5089920
3313da9
 
 
 
63525c7
 
5089920
 
 
63525c7
 
 
9840152
 
5089920
 
 
 
 
 
 
3313da9
 
 
5089920
 
 
 
3313da9
5089920
 
92cb699
3313da9
63525c7
5089920
3313da9
5089920
3313da9
5089920
3313da9
8583908
5089920
 
3313da9
63525c7
3313da9
 
63525c7
3313da9
 
5089920
3313da9
 
63525c7
3313da9
 
63525c7
3313da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63525c7
3313da9
 
 
 
63525c7
5089920
3313da9
63525c7
3313da9
 
 
5089920
 
63525c7
3313da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5089920
 
63525c7
3313da9
 
 
63525c7
5089920
 
 
3313da9
 
 
 
 
 
 
 
 
 
92cb699
3313da9
 
 
 
 
 
 
 
 
 
 
 
 
63525c7
5089920
b97795f
3313da9
 
 
 
 
 
 
 
5089920
3313da9
 
 
 
 
 
5089920
3313da9
200c5c4
 
3313da9
 
 
 
 
92cb699
3313da9
5089920
3313da9
 
 
 
 
 
 
 
 
 
 
 
754c854
3313da9
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
try:
    if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
        if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, 'LANCZOS'): # Pillow 8
         if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, 'ANTIALIAS'):
             print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
# --- END MONKEY PATCH ---

from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO) # Set default logging level for this module

# --- ElevenLabs Client Import ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient
    Voice = ImportedVoice
    VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True
    logger.info("ElevenLabs client components imported successfully.")
except Exception as e_eleven:
    logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio generation will be disabled.")

# --- RunwayML Client Import (Placeholder) ---
RUNWAYML_SDK_IMPORTED = False
RunwayMLClient = None # Placeholder for the actual RunwayML client class
try:
    # Example: from runwayml import RunwayClient as ImportedRunwayMLClient
    # RunwayMLClient = ImportedRunwayMLClient
    # RUNWAYML_SDK_IMPORTED = True
    logger.info("RunwayML SDK import is a placeholder. Actual SDK needed for Runway features.")
except ImportError:
    logger.warning("RunwayML SDK (placeholder) not found. RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
    logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML features disabled.")


class VisualEngine:
    def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)

        self.font_filename = "arial.ttf" # Or a more reliably found font like "DejaVuSans-Bold.ttf"
        font_paths_to_try = [
            self.font_filename,
            f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
            f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
            f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS
            f"C:/Windows/Fonts/arial.ttf", # Windows
            f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
        ]
        self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
        self.font_size_pil = 20
        self.video_overlay_font_size = 30
        self.video_overlay_font_color = 'white'
        # For MoviePy TextClip, use font names ImageMagick knows. Check with `convert -list font`.
        # 'Liberation-Sans-Bold' is a good default if available.
        self.video_overlay_font = 'DejaVuSans-Bold' if 'dejavu' in (self.font_path_pil or '').lower() else 'Liberation-Sans-Bold'


        try:
            if self.font_path_pil:
                self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
                logger.info(f"Pillow font loaded: {self.font_path_pil}.")
            else:
                self.font = ImageFont.load_default()
                logger.warning("Custom Pillow font not found. Using default. Text rendering for placeholders might be basic.")
                self.font_size_pil = 10 # Default Pillow font is small
        except IOError as e_font:
            logger.error(f"Pillow font loading IOError for '{self.font_path_pil or 'default'}': {e_font}. Using default.")
            self.font = ImageFont.load_default()
            self.font_size_pil = 10

        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
        self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720)

        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
        self.elevenlabs_client = None
        self.elevenlabs_voice_id = default_elevenlabs_voice_id
        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
            self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
        else: self.elevenlabs_voice_settings = None

        self.pexels_api_key = None; self.USE_PEXELS = False
        self.runway_api_key = None; self.USE_RUNWAYML = False
        self.runway_client = None

        logger.info("VisualEngine initialized.")

    def set_openai_api_key(self,k):
        self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
        logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")

    def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
        self.elevenlabs_api_key=api_key
        if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
        if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try:
                self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
                self.USE_ELEVENLABS=bool(self.elevenlabs_client)
                logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
            except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
        else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")

    def set_pexels_api_key(self,k):
        self.pexels_api_key=k; self.USE_PEXELS=bool(k)
        logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")

    def set_runway_api_key(self, k):
        self.runway_api_key = k
        if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient:
            try:
                # self.runway_client = RunwayMLClient(api_key=k) # Actual initialization
                self.USE_RUNWAYML = True
                logger.info(f"RunwayML Client (Placeholder with SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
            except Exception as e: logger.error(f"RunwayML client (Placeholder with SDK) init error: {e}. Disabled.", exc_info=True); self.USE_RUNWAYML = False
        elif k:
            self.USE_RUNWAYML = True
            logger.info("RunwayML API Key set. Using direct API calls or placeholder (SDK not fully integrated/imported).")
        else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")

    def _get_text_dimensions(self,text_content,font_obj):
        if not text_content: return 0, (self.font.size if hasattr(self.font, 'size') else self.font_size_pil)
        try:
            if hasattr(font_obj,'getbbox'):
                bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
                return w, h if h > 0 else font_obj.size
            elif hasattr(font_obj,'getsize'):
                w,h=font_obj.getsize(text_content)
                return w, h if h > 0 else font_obj.size
            else: return int(len(text_content)*font_obj.size*0.6), int(font_obj.size*1.2)
        except Exception as e: logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}"); return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)

    def _create_placeholder_image_content(self,text_description,filename,size=None):
        if size is None: size = self.video_frame_size
        img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
        if not text_description: text_description="(Placeholder: No prompt text)"
        words=text_description.split();current_line=""
        for word in words:
            test_line=current_line+word+" ";
            if self._get_text_dimensions(test_line,self.font)[0] <= max_w: current_line=test_line
            else:
                if current_line: lines.append(current_line.strip());
                current_line=word+" "
        if current_line.strip(): lines.append(current_line.strip())
        if not lines and text_description: lines.append(text_description[:int(max_w//(self._get_text_dimensions("A",self.font)[0] or 10))]+"..." if text_description else "(Text too long)")
        elif not lines: lines.append("(Placeholder Text Error)")
        _,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
        max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
        if max_lines_to_display <=0: max_lines_to_display = 1
        y_text_start = padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
        y_text = y_text_start
        for i in range(max_lines_to_display):
            line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
            d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
            if i==6 and max_lines_to_display > 7: d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180));break
        filepath=os.path.join(self.output_dir,filename);
        try:img.save(filepath);return filepath
        except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None

    def _search_pexels_image(self, query, output_filename_base):
        if not self.USE_PEXELS or not self.pexels_api_key: return None
        headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"} # Request higher quality
        pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
        filepath = os.path.join(self.output_dir, pexels_filename)
        try:
            logger.info(f"Searching Pexels for: '{query}'"); effective_query = " ".join(query.split()[:5]); params["query"] = effective_query
            response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
            response.raise_for_status(); data = response.json()
            if data.get("photos") and len(data["photos"]) > 0:
                photo_url = data["photos"][0]["src"]["large2x"]
                image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
                img_data = Image.open(io.BytesIO(image_response.content))
                if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
                img_data.save(filepath); logger.info(f"Pexels image saved: {filepath}"); return filepath
            else: logger.info(f"No photos found on Pexels for query: '{effective_query}'")
        except Exception as e: logger.error(f"Pexels search/download for query '{query}': {e}", exc_info=True)
        return None

    def _generate_video_clip_with_runwayml(self, prompt_text, scene_identifier_filename_base, target_duration_seconds=4, input_image_path=None):
        if not self.USE_RUNWAYML or not self.runway_api_key:
            logger.warning("RunwayML not enabled or API key missing. Cannot generate video clip.")
            return None
        output_video_filename = scene_identifier_filename_base.replace(".png", "_runway.mp4") # More specific extension
        output_video_filepath = os.path.join(self.output_dir, output_video_filename)
        logger.info(f"Attempting RunwayML video generation for: {prompt_text[:100]}... (Target duration: {target_duration_seconds}s)")
        # --- START ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL - NEEDS IMPLEMENTATION) ---
        # Example:
        # if self.runway_client:
        #     try:
        #         # result = self.runway_client.generate(text=prompt_text, duration=target_duration_seconds, seed_image=input_image_path)
        #         # result.save(output_video_filepath)
        #         # return output_video_filepath
        #     except Exception as e_runway:
        #         logger.error(f"Actual RunwayML generation error: {e_runway}", exc_info=True)
        #         return None
        # else: logger.warning("RunwayML client not initialized (placeholder).")
        # --- END ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
        logger.warning("Using PLACEHOLDER video generation for RunwayML as actual API calls are not implemented.")
        return self._create_placeholder_video_content(f"[RunwayML Placeholder] {prompt_text}", output_video_filename, duration=target_duration_seconds)

    def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
        if size is None: size = self.video_frame_size
        filepath = os.path.join(self.output_dir, filename)
        txt_clip = None # Initialize
        try:
            txt_clip = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font,
                                bg_color='black', size=size, method='caption').set_duration(duration)
            txt_clip.write_videofile(filepath, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
            logger.info(f"Placeholder video saved: {filepath}")
            return filepath
        except Exception as e: logger.error(f"Failed to create placeholder video {filepath}: {e}", exc_info=True); return None
        finally:
            if txt_clip and hasattr(txt_clip, 'close'): txt_clip.close()

    def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
                             generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
        base_name, _ = os.path.splitext(scene_identifier_filename_base)
        asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_prompt_text, 'error_message': 'Generation not attempted'}

        if generate_as_video_clip and self.USE_RUNWAYML:
            logger.info(f"Attempting RunwayML video clip generation for {base_name}")
            video_path = self._generate_video_clip_with_runwayml(
                image_prompt_text, base_name,
                target_duration_seconds=runway_target_duration,
                input_image_path=input_image_for_runway
            )
            if video_path and os.path.exists(video_path):
                asset_info = {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
                return asset_info
            else: logger.warning(f"RunwayML video clip generation failed for {base_name}. Falling back to image."); asset_info['error_message'] = "RunwayML video generation failed."

        image_filename_with_ext = base_name + ".png"
        filepath = os.path.join(self.output_dir, image_filename_with_ext)
        asset_info['type'] = 'image'

        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_retries = 2; attempt_num = 0
            for attempt_num in range(max_retries):
                try:
                    logger.info(f"Attempt {attempt_num+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
                    client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
                    response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
                    image_url = response.data[0].url; revised_prompt = getattr(response.data[0], 'revised_prompt', None)
                    if revised_prompt: logger.info(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
                    image_response = requests.get(image_url, timeout=120); image_response.raise_for_status()
                    img_data = Image.open(io.BytesIO(image_response.content));
                    if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
                    img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
                    asset_info = {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': revised_prompt}
                    return asset_info # Success
                except openai.RateLimitError as e_rate: logger.warning(f"OpenAI Rate Limit on attempt {attempt_num+1}: {e_rate}. Retrying..."); time.sleep(5 * (attempt_num + 1)); asset_info['error_message'] = str(e_rate)
                except openai.APIError as e_api: logger.error(f"OpenAI API Error: {e_api}"); asset_info['error_message'] = str(e_api); break
                except requests.exceptions.RequestException as e_req: logger.error(f"Requests Error (DALL-E download): {e_req}"); asset_info['error_message'] = str(e_req); break
                except Exception as e_gen: logger.error(f"Generic error (DALL-E gen): {e_gen}", exc_info=True); asset_info['error_message'] = str(e_gen); break
            if asset_info['error']: logger.warning(f"DALL-E generation failed after {attempt_num+1} attempts. Trying Pexels fallback...")
        
        if self.USE_PEXELS and (asset_info['error'] or not (self.USE_AI_IMAGE_GENERATION and self.openai_api_key)):
            pexels_query_text = scene_data.get('pexels_search_query_๊ฐ๋…', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
            pexels_path = self._search_pexels_image(pexels_query_text, image_filename_with_ext)
            if pexels_path:
                asset_info = {'path': pexels_path, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pexels_query_text}"}
                return asset_info
            current_error_msg = asset_info.get('error_message', "")
            asset_info['error_message'] = (current_error_msg + " Pexels search also failed or disabled.").strip()
            if not asset_info['error']: logger.warning("Pexels search failed or was disabled (DALL-E not attempted).")

        if asset_info['error']:
            logger.warning("All primary generation methods failed. Using placeholder image.")
            placeholder_prompt_text = asset_info.get('prompt_used', image_prompt_text)
            placeholder_path = self._create_placeholder_image_content(f"[Fallback Placeholder] {placeholder_prompt_text[:100]}...", image_filename_with_ext)
            if placeholder_path:
                asset_info = {'path': placeholder_path, 'type': 'image', 'error': False, 'prompt_used': placeholder_prompt_text}
            else:
                current_error_msg = asset_info.get('error_message', "")
                asset_info['error_message'] = (current_error_msg + " Placeholder creation also failed.").strip()
        return asset_info

    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
            logger.info("ElevenLabs conditions not met. Skipping audio generation.")
            return None
        audio_filepath = os.path.join(self.output_dir, output_filename)
        try:
            logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
            audio_stream_method = None
            if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
                audio_stream_method = self.elevenlabs_client.text_to_speech.stream; logger.info("Using elevenlabs_client.text_to_speech.stream()")
            elif hasattr(self.elevenlabs_client, 'generate_stream') : audio_stream_method = self.elevenlabs_client.generate_stream; logger.info("Using elevenlabs_client.generate_stream()")
            elif hasattr(self.elevenlabs_client, 'generate'):
                logger.info("Using elevenlabs_client.generate() (non-streaming).")
                voice_param = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id)
                audio_bytes = self.elevenlabs_client.generate(text=text_to_narrate, voice=voice_param, model="eleven_multilingual_v2")
                with open(audio_filepath, "wb") as f: f.write(audio_bytes)
                logger.info(f"ElevenLabs audio (non-streamed) saved: {audio_filepath}"); return audio_filepath
            else: logger.error("No recognized audio generation method found on ElevenLabs client."); return None

            if audio_stream_method: # Streaming logic
                voice_param_for_stream = {"voice_id": str(self.elevenlabs_voice_id)}
                if self.elevenlabs_voice_settings:
                    if hasattr(self.elevenlabs_voice_settings, 'model_dump'): voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.model_dump() # Pydantic v2
                    elif hasattr(self.elevenlabs_voice_settings, 'dict'): voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.dict() # Pydantic v1
                    else: voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings
                
                audio_data_iterator = audio_stream_method(text=text_to_narrate, model_id="eleven_multilingual_v2", **voice_param_for_stream)
                with open(audio_filepath, "wb") as f:
                    for chunk in audio_data_iterator:
                        if chunk: f.write(chunk)
                logger.info(f"ElevenLabs audio (streamed) saved: {audio_filepath}"); return audio_filepath
        except AttributeError as ae: logger.error(f"AttributeError with ElevenLabs client: {ae}. SDK method/params might be different.", exc_info=True)
        except Exception as e: logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
        return None

    def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
        if not asset_data_list:
            logger.warning("No asset data provided for animatic assembly.")
            return None

        processed_moviepy_clips = []
        narration_audio_clip = None
        final_composite_clip_obj = None
        
        logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}.")

        for i, asset_info in enumerate(asset_data_list):
            asset_path = asset_info.get('path')
            asset_type = asset_info.get('type')
            target_scene_duration = asset_info.get('duration', 4.5) # Duration for this scene in the animatic
            scene_num = asset_info.get('scene_num', i + 1)
            key_action = asset_info.get('key_action', '')

            logger.info(f"Processing S{scene_num}: Path='{asset_path}', Type='{asset_type}', TargetDur='{target_scene_duration}'s")

            if not (asset_path and os.path.exists(asset_path)):
                logger.warning(f"S{scene_num}: Asset not found at '{asset_path}'. Skipping."); continue
            if target_scene_duration <= 0:
                logger.warning(f"S{scene_num}: Invalid duration ({target_scene_duration}s). Skipping."); continue

            current_scene_clip = None # The final MoviePy clip for this scene
            try:
                if asset_type == 'image':
                    pil_img = Image.open(asset_path)
                    logger.debug(f"S{scene_num}: Loaded image. Mode: {pil_img.mode}, Size: {pil_img.size}")

                    # 1. Ensure image is RGBA for consistent alpha handling during processing
                    img_rgba_source = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()

                    # 2. Thumbnail the RGBA image
                    img_thumbnail = img_rgba_source.copy() # Work on a copy
                    resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else (Image.ANTIALIAS if hasattr(Image, 'ANTIALIAS') else Image.BILINEAR)
                    img_thumbnail.thumbnail(self.video_frame_size, resample_filter)
                    logger.debug(f"S{scene_num}: Thumbnailed to: {img_thumbnail.size}")

                    # 3. Create a target-sized RGBA canvas (fully transparent)
                    canvas_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0))
                    
                    # 4. Paste the thumbnailed image (with its alpha) onto the center of the RGBA canvas
                    xo = (self.video_frame_size[0] - img_thumbnail.width) // 2
                    yo = (self.video_frame_size[1] - img_thumbnail.height) // 2
                    canvas_rgba.paste(img_thumbnail, (xo, yo), img_thumbnail) # Use img_thumbnail's alpha as mask
                    logger.debug(f"S{scene_num}: Image pasted onto transparent RGBA canvas.")

                    # 5. Create a final RGB image by pasting the RGBA canvas onto an opaque background
                    #    This flattens transparency and ensures an RGB image for MoviePy.
                    final_rgb_image_for_moviepy = Image.new("RGB", self.video_frame_size, (0, 0, 0)) # Opaque black background
                    final_rgb_image_for_moviepy.paste(canvas_rgba, mask=canvas_rgba.split()[3]) # Paste using alpha from canvas_rgba

                    # --- CRITICAL DEBUG STEP: Save the image that will be fed to MoviePy ---
                    debug_canvas_path = os.path.join(self.output_dir, f"debug_final_rgb_FOR_MOVIEPY_scene_{scene_num}.png")
                    try:
                        final_rgb_image_for_moviepy.save(debug_canvas_path)
                        logger.info(f"DEBUG: Saved final RGB image for MoviePy (S{scene_num}) to {debug_canvas_path}")
                    except Exception as e_save_canvas:
                        logger.error(f"DEBUG: Failed to save final_rgb_image_for_moviepy (S{scene_num}): {e_save_canvas}")
                    
                    frame_np = np.array(final_rgb_image_for_moviepy) # Should be (H, W, 3) dtype uint8
                    logger.debug(f"S{scene_num}: Converted to NumPy. Shape: {frame_np.shape}, Dtype: {frame_np.dtype}, Size: {frame_np.size}")

                    if frame_np.size == 0: logger.error(f"S{scene_num}: NumPy array is EMPTY. Skipping."); continue
                    if frame_np.ndim != 3 or frame_np.shape[2] != 3: logger.error(f"S{scene_num}: NumPy array has unexpected shape {frame_np.shape}. Skipping."); continue
                    if frame_np.dtype != np.uint8: frame_np = frame_np.astype(np.uint8); logger.warning(f"S{scene_num}: Converted NumPy array dtype to uint8.")

                    current_clip_base = ImageClip(frame_np, transparent=False).set_duration(target_scene_duration)
                    logger.debug(f"S{scene_num}: Base ImageClip created from NumPy array.")
                    
                    current_scene_clip_with_fx = current_clip_base # Start with base
                    try: # Ken Burns
                        end_scale = random.uniform(1.03, 1.08)
                        current_scene_clip_with_fx = current_clip_base.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / target_scene_duration) if target_scene_duration > 0 else 1).set_position('center')
                        logger.debug(f"S{scene_num}: Ken Burns effect applied.")
                    except Exception as e_fx: logger.error(f"S{scene_num}: Ken Burns error: {e_fx}. Using static.", exc_info=False)
                    
                    current_scene_clip = current_scene_clip_with_fx

                elif asset_type == 'video':
                    logger.debug(f"S{scene_num}: Loading video asset from {asset_path}")
                    source_video_clip = None # Initialize
                    try:
                        source_video_clip = VideoFileClip(asset_path, target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None)
                        
                        temp_clip_for_video_asset = source_video_clip
                        if source_video_clip.duration != target_scene_duration:
                            if source_video_clip.duration > target_scene_duration:
                                temp_clip_for_video_asset = source_video_clip.subclip(0, target_scene_duration)
                            else: # Source is shorter
                                if target_scene_duration / source_video_clip.duration > 1.5 and source_video_clip.duration > 0.1:
                                    temp_clip_for_video_asset = source_video_clip.loop(duration=target_scene_duration)
                                else: # Let it play its native length, will be set to target_scene_duration for concat
                                    temp_clip_for_video_asset = source_video_clip.set_duration(source_video_clip.duration) 
                                    logger.info(f"S{scene_num}: Video clip ({source_video_clip.duration:.2f}s) shorter than scene target ({target_scene_duration:.2f}s).")
                        
                        current_scene_clip = temp_clip_for_video_asset.set_duration(target_scene_duration)

                        if current_scene_clip.size != list(self.video_frame_size):
                            logger.debug(f"S{scene_num}: Resizing video clip from {current_scene_clip.size} to {self.video_frame_size}")
                            current_scene_clip = current_scene_clip.resize(self.video_frame_size)
                        
                        logger.debug(f"S{scene_num}: Video asset processed. Final duration for scene: {current_scene_clip.duration:.2f}s")
                    except Exception as e_vid_load:
                        logger.error(f"S{scene_num}: Error loading/processing video file '{asset_path}': {e_vid_load}", exc_info=True)
                        if source_video_clip and hasattr(source_video_clip, 'close'): source_video_clip.close()
                        continue # Skip this asset
                    finally: # Close original source if it was opened and different from the final clip
                         if source_video_clip and source_video_clip is not current_scene_clip and hasattr(source_video_clip, 'close'):
                             source_video_clip.close()


                else: logger.warning(f"S{scene_num}: Unknown asset type '{asset_type}'. Skipping."); continue
                
                # Add text overlay (common to both image and video assets)
                if current_scene_clip and key_action:
                    logger.debug(f"S{scene_num}: Adding text overlay: '{key_action}'")
                    text_overlay_duration = min(target_scene_duration - 0.5, target_scene_duration * 0.8) if target_scene_duration > 0.5 else target_scene_duration
                    text_overlay_start = (target_scene_duration - text_overlay_duration) / 2.0
                    if text_overlay_duration > 0:
                        try:
                            txt_clip = TextClip(f"Scene {scene_num}\n{key_action}",
                                                fontsize=self.video_overlay_font_size, color=self.video_overlay_font_color,
                                                font=self.video_overlay_font, bg_color='rgba(10,10,20,0.7)',
                                                method='caption', align='West', size=(self.video_frame_size[0] * 0.9, None),
                                                kerning=-1, stroke_color='black', stroke_width=1.5
                                               ).set_duration(text_overlay_duration).set_start(text_overlay_start).set_position(('center', 0.92), relative=True)
                            current_scene_clip = CompositeVideoClip([current_scene_clip, txt_clip], size=self.video_frame_size, use_bgclip=True)
                            logger.debug(f"S{scene_num}: Text overlay composited.")
                        except Exception as e_txt: logger.error(f"S{scene_num}: Error creating TextClip or CompositeVideoClip for text: {e_txt}. Using clip without text.", exc_info=True)
                
                if current_scene_clip:
                    processed_moviepy_clips.append(current_scene_clip)
                    logger.info(f"S{scene_num}: Asset successfully processed. Clip duration: {current_scene_clip.duration:.2f}s, Added to final list.")

            except Exception as e_asset_proc:
                logger.error(f"MAJOR Error processing asset for Scene {scene_num} ({asset_path}): {e_asset_proc}", exc_info=True)
                # Ensure clip is closed if it was partially created
                if current_scene_clip and hasattr(current_scene_clip, 'reader') and current_scene_clip.reader:
                    if hasattr(current_scene_clip, 'close'): current_scene_clip.close()
                elif current_scene_clip and hasattr(current_scene_clip, 'close'):
                    current_scene_clip.close()

        if not processed_moviepy_clips: logger.warning("No MoviePy clips were successfully processed. Aborting animatic assembly."); return None
        
        transition_duration = 0.75
        try:
            if not processed_moviepy_clips: logger.error("No clips to concatenate after processing loop."); return None
            logger.info(f"Concatenating {len(processed_moviepy_clips)} processed clips.")
            if len(processed_moviepy_clips) > 1:
                final_composite_clip_obj = concatenate_videoclips(processed_moviepy_clips, padding = -transition_duration if transition_duration > 0 else 0, method="compose")
            elif processed_moviepy_clips: final_composite_clip_obj = processed_moviepy_clips[0]
            
            if not final_composite_clip_obj: logger.error("Concatenation resulted in a None clip."); return None
            logger.info(f"Concatenated clip duration: {final_composite_clip_obj.duration:.2f}s")

            if transition_duration > 0:
                if final_composite_clip_obj.duration > transition_duration * 2:
                    final_composite_clip_obj = final_composite_clip_obj.fx(vfx.fadein, transition_duration).fx(vfx.fadeout, transition_duration)
                elif final_composite_clip_obj.duration > 0:
                    final_composite_clip_obj = final_composite_clip_obj.fx(vfx.fadein, min(transition_duration, final_composite_clip_obj.duration/2.0))
                logger.debug("Applied fade in/out effects.")

            if overall_narration_path and os.path.exists(overall_narration_path) and final_composite_clip_obj.duration > 0:
                try:
                    narration_audio_clip = AudioFileClip(overall_narration_path)
                    logger.info(f"Adding narration. Video dur: {final_composite_clip_obj.duration:.2f}s, Audio dur: {narration_audio_clip.duration:.2f}s")
                    final_composite_clip_obj = final_composite_clip_obj.set_audio(narration_audio_clip) # Audio will be cut/padded to video duration
                    logger.info("Overall narration added to video.")
                except Exception as e_audio: logger.error(f"Error adding overall narration: {e_audio}", exc_info=True)
            elif final_composite_clip_obj.duration <= 0 : logger.warning("Video has no duration. Audio not added.")
            
            if final_composite_clip_obj and final_composite_clip_obj.duration > 0:
                output_path = os.path.join(self.output_dir, output_filename)
                logger.info(f"Attempting to write final animatic: {output_path} (Duration: {final_composite_clip_obj.duration:.2f}s)")
                moviepy_logger_setting = 'bar' # Default to progress bar

                final_composite_clip_obj.write_videofile(
                    output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
                    temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
                    remove_temp=True, threads=os.cpu_count() or 2, logger=moviepy_logger_setting, bitrate="5000k"
                )
                logger.info(f"Animatic video successfully created: {output_path}")
                return output_path
            else: logger.error("Final animatic clip is invalid or has zero duration. Cannot write file."); return None
        except Exception as e_write: logger.error(f"Error during video file writing or final composition: {e_write}", exc_info=True); return None
        finally:
            logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
            clips_to_close = processed_moviepy_clips + ([narration_audio_clip] if narration_audio_clip else []) + ([final_composite_clip_obj] if final_composite_clip_obj else [])
            for clip_obj in clips_to_close:
                if clip_obj and hasattr(clip_obj, 'close'):
                    try: clip_obj.close()
                    except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {e_close}")