Spaces:
Running
Running
File size: 1,642 Bytes
67e3963 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import streamlit as st
from agents.analytics_pipeline import analytics_coordinator
import os
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
st.set_page_config(page_title="BizIntel AI Ultra", layout="wide")
st.title("π BizIntel AI Ultra - Ultimate Business Intelligence")
input_source = st.radio("Select data source", ["Upload CSV", "Connect to SQL Database"])
file_path = None
if input_source == "Upload CSV":
uploaded_file = st.file_uploader("Upload CSV", type="csv")
if uploaded_file:
file_path = os.path.join("data", uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.read())
st.success("File uploaded.")
elif input_source == "Connect to SQL Database":
engine = st.selectbox("Select database engine", SUPPORTED_ENGINES)
conn_str = st.text_input("Connection string (SQLAlchemy format)")
if conn_str:
tables = list_tables(conn_str)
if tables:
table_name = st.selectbox("Choose a table", tables)
if table_name:
file_path = fetch_data_from_db(conn_str, table_name)
st.success(f"Fetched table '{table_name}' as CSV.")
if file_path:
st.info("Running analytics pipeline...")
result = analytics_coordinator.run(input=file_path)
st.subheader("Analysis & Strategy Report")
st.text(result)
if os.path.exists("sales_plot.png"):
st.image("sales_plot.png", caption="Sales Trend", use_column_width=True)
if os.path.exists("forecast_plot.png"):
st.image("forecast_plot.png", caption="Forecast Chart", use_column_width=True)
|