File size: 9,575 Bytes
97069e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d415739
97069e1
 
d415739
97069e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f94c3f9
97069e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72619e8
97069e1
99aa527
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import nltk; nltk.download('wordnet')

#@title Load Model
selected_model = 'lookbook'

# Load model
import torch
import PIL
import numpy as np
from PIL import Image
import imageio
from models import get_instrumented_model
from decomposition import get_or_compute
from config import Config
from skimage import img_as_ubyte
import gradio as gr
import numpy as np
from ipywidgets import fixed

# Speed up computation
torch.autograd.set_grad_enabled(False)
torch.backends.cudnn.benchmark = True

# Specify model to use
config = Config(
  model='StyleGAN2',
  layer='style',
  output_class=selected_model,
  components=80,
  use_w=True,
  batch_size=5_000, # style layer quite small
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

inst = get_instrumented_model(config.model, config.output_class,
                              config.layer, torch.device(device), use_w=config.use_w)

path_to_components = get_or_compute(config, inst)

model = inst.model

comps = np.load(path_to_components)
lst = comps.files
latent_dirs = []
latent_stdevs = []

load_activations = False

for item in lst:
    if load_activations:
      if item == 'act_comp':
        for i in range(comps[item].shape[0]):
          latent_dirs.append(comps[item][i])
      if item == 'act_stdev':
        for i in range(comps[item].shape[0]):
          latent_stdevs.append(comps[item][i])
    else:
      if item == 'lat_comp':
        for i in range(comps[item].shape[0]):
          latent_dirs.append(comps[item][i])
      if item == 'lat_stdev':
        for i in range(comps[item].shape[0]):
          latent_stdevs.append(comps[item][i])


#@title Define functions


# Taken from https://github.com/alexanderkuk/log-progress
def log_progress(sequence, every=1, size=None, name='Items'):
    from ipywidgets import IntProgress, HTML, VBox
    from IPython.display import display

    is_iterator = False
    if size is None:
        try:
            size = len(sequence)
        except TypeError:
            is_iterator = True
    if size is not None:
        if every is None:
            if size <= 200:
                every = 1
            else:
                every = int(size / 200)     # every 0.5%
    else:
        assert every is not None, 'sequence is iterator, set every'

    if is_iterator:
        progress = IntProgress(min=0, max=1, value=1)
        progress.bar_style = 'info'
    else:
        progress = IntProgress(min=0, max=size, value=0)
    label = HTML()
    box = VBox(children=[label, progress])
    display(box)

    index = 0
    try:
        for index, record in enumerate(sequence, 1):
            if index == 1 or index % every == 0:
                if is_iterator:
                    label.value = '{name}: {index} / ?'.format(
                        name=name,
                        index=index
                    )
                else:
                    progress.value = index
                    label.value = u'{name}: {index} / {size}'.format(
                        name=name,
                        index=index,
                        size=size
                    )
            yield record
    except:
        progress.bar_style = 'danger'
        raise
    else:
        progress.bar_style = 'success'
        progress.value = index
        label.value = "{name}: {index}".format(
            name=name,
            index=str(index or '?')
        )

def name_direction(sender):
  if not text.value:
    print('Please name the direction before saving')
    return
    
  if num in named_directions.values():
    target_key = list(named_directions.keys())[list(named_directions.values()).index(num)]
    print(f'Direction already named: {target_key}')
    print(f'Overwriting... ')
    del(named_directions[target_key])
  named_directions[text.value] = [num, start_layer.value, end_layer.value]
  save_direction(random_dir, text.value)
  for item in named_directions:
    print(item, named_directions[item])

def save_direction(direction, filename):
  filename += ".npy"
  np.save(filename, direction, allow_pickle=True, fix_imports=True)
  print(f'Latent direction saved as {filename}')

def mix_w(w1, w2, content, style):
    for i in range(0,5):
        w2[i] = w1[i] * (1 - content) + w2[i] * content

    for i in range(5, 16):
        w2[i] = w1[i] * (1 - style) + w2[i] * style
    
    return w2

def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
    # blockPrint()
    model.truncation = truncation
    if w is None:
        w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
        w = [w]*model.get_max_latents() # one per layer
    else:
        w = [np.expand_dims(x, 0) for x in w]
    
    for l in range(start, end):
      for i in range(len(directions)):
        w[l] = w[l] + directions[i] * distances[i] * scale
    
    torch.cuda.empty_cache()
    #save image and display
    out = model.sample_np(w)
    final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
    
    
    if save is not None:
      if disp == False:
        print(save)
      final_im.save(f'out/{seed}_{save:05}.png')
    if disp:
      display(final_im)
    
    return final_im

def generate_mov(seed, truncation, direction_vec, scale, layers, n_frames, out_name = 'out', noise_spec = None, loop=True):
  """Generates a mov moving back and forth along the chosen direction vector"""
  # Example of reading a generated set of images, and storing as MP4.
  movieName = f'{out_name}.mp4'
  offset = -10
  step = 20 / n_frames
  imgs = []
  for i in log_progress(range(n_frames), name = "Generating frames"):
    print(f'\r{i} / {n_frames}', end='')
    w = model.sample_latent(1, seed=seed).cpu().numpy()

    model.truncation = truncation
    w = [w]*model.get_max_latents() # one per layer
    for l in layers:
      if l <= model.get_max_latents():
          w[l] = w[l] + direction_vec * offset * scale

    #save image and display
    out = model.sample_np(w)
    final_im = Image.fromarray((out * 255).astype(np.uint8))
    imgs.append(out)
    #increase offset
    offset += step
  if loop:
    imgs += imgs[::-1]
  with imageio.get_writer(movieName, mode='I') as writer:
    for image in log_progress(list(imgs), name = "Creating animation"):
        writer.append_data(img_as_ubyte(image))


#@title Demo UI


def generate_image(seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer):
    seed1 = int(seed1)
    seed2 = int(seed2)

    scale = 1
    params = {'c0': c0,
          'c1': c1,
          'c2': c2,
          'c3': c3,
          'c4': c4,
          'c5': c5,
          'c6': c6}

    param_indexes = {'c0': 0,
              'c1': 1,
              'c2': 2,
              'c3': 3,
              'c4': 4,
              'c5': 5,
              'c6': 6}

    directions = []
    distances = []
    for k, v in params.items():
        directions.append(latent_dirs[param_indexes[k]])
        distances.append(v)

    w1 = model.sample_latent(1, seed=seed1).detach().cpu().numpy()
    w1 = [w1]*model.get_max_latents() # one per layer
    im1 = model.sample_np(w1)

    w2 = model.sample_latent(1, seed=seed2).detach().cpu().numpy()
    w2 = [w2]*model.get_max_latents() # one per layer
    im2 = model.sample_np(w2)
    combined_im = np.concatenate([im1, im2], axis=1)
    input_im = Image.fromarray((combined_im * 255).astype(np.uint8))
    

    mixed_w = mix_w(w1, w2, content, style)
    return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)

truncation = gr.inputs.Slider(minimum=0, maximum=1, default=0.5, label="Truncation")
start_layer = gr.inputs.Number(default=3, label="Start Layer")
end_layer = gr.inputs.Number(default=14, label="End Layer")
seed1 = gr.inputs.Number(default=0, label="Seed 1")
seed2 = gr.inputs.Number(default=0, label="Seed 2")
content = gr.inputs.Slider(label="Structure", minimum=0, maximum=1, default=0.5)
style = gr.inputs.Slider(label="Style", minimum=0, maximum=1, default=0.5)

slider_max_val = 20
slider_min_val = -20
slider_step = 1

c0 = gr.inputs.Slider(label="Sleeve & Size", minimum=slider_min_val, maximum=slider_max_val, default=0)
c1 = gr.inputs.Slider(label="Dress - Jacket", minimum=slider_min_val, maximum=slider_max_val, default=0)
c2 = gr.inputs.Slider(label="Female Coat", minimum=slider_min_val, maximum=slider_max_val, default=0)
c3 = gr.inputs.Slider(label="Coat", minimum=slider_min_val, maximum=slider_max_val, default=0)
c4 = gr.inputs.Slider(label="Graphics", minimum=slider_min_val, maximum=slider_max_val, default=0)
c5 = gr.inputs.Slider(label="Dark", minimum=slider_min_val, maximum=slider_max_val, default=0)
c6 = gr.inputs.Slider(label="Less Cleavage", minimum=slider_min_val, maximum=slider_max_val, default=0)


scale = 1

inputs = [seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer]
description = "Change the seed number to generate different parent design. Made by <a href='https://www.mfrashad.com/' target='_blank'>@mfrashad</a>. For more details on how to build this, read the <a href='https://towardsdatascience.com/how-to-build-an-ai-fashion-designer-575b5e67915e' target='_blank'>article</a> or <a href='https://github.com/mfrashad/ClothingGAN' target='_blank'>repo</a>. Please give a clap/star if you find it useful :)"

gr.Interface(generate_image, inputs, ["image", "image"], description=description, live=True, title="ClothingGAN").launch()