File size: 33,391 Bytes
97069e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

"""Network architectures used in the StyleGAN paper."""

import numpy as np
import tensorflow as tf
import dnnlib
import dnnlib.tflib as tflib

# NOTE: Do not import any application-specific modules here!
# Specify all network parameters as kwargs.

#----------------------------------------------------------------------------
# Primitive ops for manipulating 4D activation tensors.
# The gradients of these are not necessary efficient or even meaningful.

def _blur2d(x, f=[1,2,1], normalize=True, flip=False, stride=1):
    assert x.shape.ndims == 4 and all(dim.value is not None for dim in x.shape[1:])
    assert isinstance(stride, int) and stride >= 1

    # Finalize filter kernel.
    f = np.array(f, dtype=np.float32)
    if f.ndim == 1:
        f = f[:, np.newaxis] * f[np.newaxis, :]
    assert f.ndim == 2
    if normalize:
        f /= np.sum(f)
    if flip:
        f = f[::-1, ::-1]
    f = f[:, :, np.newaxis, np.newaxis]
    f = np.tile(f, [1, 1, int(x.shape[1]), 1])

    # No-op => early exit.
    if f.shape == (1, 1) and f[0,0] == 1:
        return x

    # Convolve using depthwise_conv2d.
    orig_dtype = x.dtype
    x = tf.cast(x, tf.float32)  # tf.nn.depthwise_conv2d() doesn't support fp16
    f = tf.constant(f, dtype=x.dtype, name='filter')
    strides = [1, 1, stride, stride]
    x = tf.nn.depthwise_conv2d(x, f, strides=strides, padding='SAME', data_format='NCHW')
    x = tf.cast(x, orig_dtype)
    return x

def _upscale2d(x, factor=2, gain=1):
    assert x.shape.ndims == 4 and all(dim.value is not None for dim in x.shape[1:])
    assert isinstance(factor, int) and factor >= 1

    # Apply gain.
    if gain != 1:
        x *= gain

    # No-op => early exit.
    if factor == 1:
        return x

    # Upscale using tf.tile().
    s = x.shape
    x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
    x = tf.tile(x, [1, 1, 1, factor, 1, factor])
    x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
    return x

def _downscale2d(x, factor=2, gain=1):
    assert x.shape.ndims == 4 and all(dim.value is not None for dim in x.shape[1:])
    assert isinstance(factor, int) and factor >= 1

    # 2x2, float32 => downscale using _blur2d().
    if factor == 2 and x.dtype == tf.float32:
        f = [np.sqrt(gain) / factor] * factor
        return _blur2d(x, f=f, normalize=False, stride=factor)

    # Apply gain.
    if gain != 1:
        x *= gain

    # No-op => early exit.
    if factor == 1:
        return x

    # Large factor => downscale using tf.nn.avg_pool().
    # NOTE: Requires tf_config['graph_options.place_pruned_graph']=True to work.
    ksize = [1, 1, factor, factor]
    return tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding='VALID', data_format='NCHW')

#----------------------------------------------------------------------------
# High-level ops for manipulating 4D activation tensors.
# The gradients of these are meant to be as efficient as possible.

def blur2d(x, f=[1,2,1], normalize=True):
    with tf.variable_scope('Blur2D'):
        @tf.custom_gradient
        def func(x):
            y = _blur2d(x, f, normalize)
            @tf.custom_gradient
            def grad(dy):
                dx = _blur2d(dy, f, normalize, flip=True)
                return dx, lambda ddx: _blur2d(ddx, f, normalize)
            return y, grad
        return func(x)

def upscale2d(x, factor=2):
    with tf.variable_scope('Upscale2D'):
        @tf.custom_gradient
        def func(x):
            y = _upscale2d(x, factor)
            @tf.custom_gradient
            def grad(dy):
                dx = _downscale2d(dy, factor, gain=factor**2)
                return dx, lambda ddx: _upscale2d(ddx, factor)
            return y, grad
        return func(x)

def downscale2d(x, factor=2):
    with tf.variable_scope('Downscale2D'):
        @tf.custom_gradient
        def func(x):
            y = _downscale2d(x, factor)
            @tf.custom_gradient
            def grad(dy):
                dx = _upscale2d(dy, factor, gain=1/factor**2)
                return dx, lambda ddx: _downscale2d(ddx, factor)
            return y, grad
        return func(x)

#----------------------------------------------------------------------------
# Get/create weight tensor for a convolutional or fully-connected layer.

def get_weight(shape, gain=np.sqrt(2), use_wscale=False, lrmul=1):
    fan_in = np.prod(shape[:-1]) # [kernel, kernel, fmaps_in, fmaps_out] or [in, out]
    he_std = gain / np.sqrt(fan_in) # He init

    # Equalized learning rate and custom learning rate multiplier.
    if use_wscale:
        init_std = 1.0 / lrmul
        runtime_coef = he_std * lrmul
    else:
        init_std = he_std / lrmul
        runtime_coef = lrmul

    # Create variable.
    init = tf.initializers.random_normal(0, init_std)
    return tf.get_variable('weight', shape=shape, initializer=init) * runtime_coef

#----------------------------------------------------------------------------
# Fully-connected layer.

def dense(x, fmaps, **kwargs):
    if len(x.shape) > 2:
        x = tf.reshape(x, [-1, np.prod([d.value for d in x.shape[1:]])])
    w = get_weight([x.shape[1].value, fmaps], **kwargs)
    w = tf.cast(w, x.dtype)
    return tf.matmul(x, w)

#----------------------------------------------------------------------------
# Convolutional layer.

def conv2d(x, fmaps, kernel, **kwargs):
    assert kernel >= 1 and kernel % 2 == 1
    w = get_weight([kernel, kernel, x.shape[1].value, fmaps], **kwargs)
    w = tf.cast(w, x.dtype)
    return tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='SAME', data_format='NCHW')

#----------------------------------------------------------------------------
# Fused convolution + scaling.
# Faster and uses less memory than performing the operations separately.

def upscale2d_conv2d(x, fmaps, kernel, fused_scale='auto', **kwargs):
    assert kernel >= 1 and kernel % 2 == 1
    assert fused_scale in [True, False, 'auto']
    if fused_scale == 'auto':
        fused_scale = min(x.shape[2:]) * 2 >= 128

    # Not fused => call the individual ops directly.
    if not fused_scale:
        return conv2d(upscale2d(x), fmaps, kernel, **kwargs)

    # Fused => perform both ops simultaneously using tf.nn.conv2d_transpose().
    w = get_weight([kernel, kernel, x.shape[1].value, fmaps], **kwargs)
    w = tf.transpose(w, [0, 1, 3, 2]) # [kernel, kernel, fmaps_out, fmaps_in]
    w = tf.pad(w, [[1,1], [1,1], [0,0], [0,0]], mode='CONSTANT')
    w = tf.add_n([w[1:, 1:], w[:-1, 1:], w[1:, :-1], w[:-1, :-1]])
    w = tf.cast(w, x.dtype)
    os = [tf.shape(x)[0], fmaps, x.shape[2] * 2, x.shape[3] * 2]
    return tf.nn.conv2d_transpose(x, w, os, strides=[1,1,2,2], padding='SAME', data_format='NCHW')

def conv2d_downscale2d(x, fmaps, kernel, fused_scale='auto', **kwargs):
    assert kernel >= 1 and kernel % 2 == 1
    assert fused_scale in [True, False, 'auto']
    if fused_scale == 'auto':
        fused_scale = min(x.shape[2:]) >= 128

    # Not fused => call the individual ops directly.
    if not fused_scale:
        return downscale2d(conv2d(x, fmaps, kernel, **kwargs))

    # Fused => perform both ops simultaneously using tf.nn.conv2d().
    w = get_weight([kernel, kernel, x.shape[1].value, fmaps], **kwargs)
    w = tf.pad(w, [[1,1], [1,1], [0,0], [0,0]], mode='CONSTANT')
    w = tf.add_n([w[1:, 1:], w[:-1, 1:], w[1:, :-1], w[:-1, :-1]]) * 0.25
    w = tf.cast(w, x.dtype)
    return tf.nn.conv2d(x, w, strides=[1,1,2,2], padding='SAME', data_format='NCHW')

#----------------------------------------------------------------------------
# Apply bias to the given activation tensor.

def apply_bias(x, lrmul=1):
    b = tf.get_variable('bias', shape=[x.shape[1]], initializer=tf.initializers.zeros()) * lrmul
    b = tf.cast(b, x.dtype)
    if len(x.shape) == 2:
        return x + b
    return x + tf.reshape(b, [1, -1, 1, 1])

#----------------------------------------------------------------------------
# Leaky ReLU activation. More efficient than tf.nn.leaky_relu() and supports FP16.

def leaky_relu(x, alpha=0.2):
    with tf.variable_scope('LeakyReLU'):
        alpha = tf.constant(alpha, dtype=x.dtype, name='alpha')
        @tf.custom_gradient
        def func(x):
            y = tf.maximum(x, x * alpha)
            @tf.custom_gradient
            def grad(dy):
                dx = tf.where(y >= 0, dy, dy * alpha)
                return dx, lambda ddx: tf.where(y >= 0, ddx, ddx * alpha)
            return y, grad
        return func(x)

#----------------------------------------------------------------------------
# Pixelwise feature vector normalization.

def pixel_norm(x, epsilon=1e-8):
    with tf.variable_scope('PixelNorm'):
        epsilon = tf.constant(epsilon, dtype=x.dtype, name='epsilon')
        return x * tf.rsqrt(tf.reduce_mean(tf.square(x), axis=1, keepdims=True) + epsilon)

#----------------------------------------------------------------------------
# Instance normalization.

def instance_norm(x, epsilon=1e-8):
    assert len(x.shape) == 4 # NCHW
    with tf.variable_scope('InstanceNorm'):
        orig_dtype = x.dtype
        x = tf.cast(x, tf.float32)
        x -= tf.reduce_mean(x, axis=[2,3], keepdims=True)
        epsilon = tf.constant(epsilon, dtype=x.dtype, name='epsilon')
        x *= tf.rsqrt(tf.reduce_mean(tf.square(x), axis=[2,3], keepdims=True) + epsilon)
        x = tf.cast(x, orig_dtype)
        return x

#----------------------------------------------------------------------------
# Style modulation.

def style_mod(x, dlatent, **kwargs):
    with tf.variable_scope('StyleMod'):
        style = apply_bias(dense(dlatent, fmaps=x.shape[1]*2, gain=1, **kwargs))
        style = tf.reshape(style, [-1, 2, x.shape[1]] + [1] * (len(x.shape) - 2))
        return x * (style[:,0] + 1) + style[:,1]

#----------------------------------------------------------------------------
# Noise input.

def apply_noise(x, noise_var=None, randomize_noise=True):
    assert len(x.shape) == 4 # NCHW
    with tf.variable_scope('Noise'):
        if noise_var is None or randomize_noise:
            noise = tf.random_normal([tf.shape(x)[0], 1, x.shape[2], x.shape[3]], dtype=x.dtype)
        else:
            noise = tf.cast(noise_var, x.dtype)
        weight = tf.get_variable('weight', shape=[x.shape[1].value], initializer=tf.initializers.zeros())
        return x + noise * tf.reshape(tf.cast(weight, x.dtype), [1, -1, 1, 1])

#----------------------------------------------------------------------------
# Minibatch standard deviation.

def minibatch_stddev_layer(x, group_size=4, num_new_features=1):
    with tf.variable_scope('MinibatchStddev'):
        group_size = tf.minimum(group_size, tf.shape(x)[0])     # Minibatch must be divisible by (or smaller than) group_size.
        s = x.shape                                             # [NCHW]  Input shape.
        y = tf.reshape(x, [group_size, -1, num_new_features, s[1]//num_new_features, s[2], s[3]])   # [GMncHW] Split minibatch into M groups of size G. Split channels into n channel groups c.
        y = tf.cast(y, tf.float32)                              # [GMncHW] Cast to FP32.
        y -= tf.reduce_mean(y, axis=0, keepdims=True)           # [GMncHW] Subtract mean over group.
        y = tf.reduce_mean(tf.square(y), axis=0)                # [MncHW]  Calc variance over group.
        y = tf.sqrt(y + 1e-8)                                   # [MncHW]  Calc stddev over group.
        y = tf.reduce_mean(y, axis=[2,3,4], keepdims=True)      # [Mn111]  Take average over fmaps and pixels.
        y = tf.reduce_mean(y, axis=[2])                         # [Mn11] Split channels into c channel groups
        y = tf.cast(y, x.dtype)                                 # [Mn11]  Cast back to original data type.
        y = tf.tile(y, [group_size, 1, s[2], s[3]])             # [NnHW]  Replicate over group and pixels.
        return tf.concat([x, y], axis=1)                        # [NCHW]  Append as new fmap.

#----------------------------------------------------------------------------
# Style-based generator used in the StyleGAN paper.
# Composed of two sub-networks (G_mapping and G_synthesis) that are defined below.

def G_style(
    latents_in,                                     # First input: Latent vectors (Z) [minibatch, latent_size].
    labels_in,                                      # Second input: Conditioning labels [minibatch, label_size].
    truncation_psi          = 0.7,                  # Style strength multiplier for the truncation trick. None = disable.
    truncation_cutoff       = 8,                    # Number of layers for which to apply the truncation trick. None = disable.
    truncation_psi_val      = None,                 # Value for truncation_psi to use during validation.
    truncation_cutoff_val   = None,                 # Value for truncation_cutoff to use during validation.
    dlatent_avg_beta        = 0.995,                # Decay for tracking the moving average of W during training. None = disable.
    style_mixing_prob       = 0.9,                  # Probability of mixing styles during training. None = disable.
    is_training             = False,                # Network is under training? Enables and disables specific features.
    is_validation           = False,                # Network is under validation? Chooses which value to use for truncation_psi.
    is_template_graph       = False,                # True = template graph constructed by the Network class, False = actual evaluation.
    components              = dnnlib.EasyDict(),    # Container for sub-networks. Retained between calls.
    **kwargs):                                      # Arguments for sub-networks (G_mapping and G_synthesis).

    # Validate arguments.
    assert not is_training or not is_validation
    assert isinstance(components, dnnlib.EasyDict)
    if is_validation:
        truncation_psi = truncation_psi_val
        truncation_cutoff = truncation_cutoff_val
    if is_training or (truncation_psi is not None and not tflib.is_tf_expression(truncation_psi) and truncation_psi == 1):
        truncation_psi = None
    if is_training or (truncation_cutoff is not None and not tflib.is_tf_expression(truncation_cutoff) and truncation_cutoff <= 0):
        truncation_cutoff = None
    if not is_training or (dlatent_avg_beta is not None and not tflib.is_tf_expression(dlatent_avg_beta) and dlatent_avg_beta == 1):
        dlatent_avg_beta = None
    if not is_training or (style_mixing_prob is not None and not tflib.is_tf_expression(style_mixing_prob) and style_mixing_prob <= 0):
        style_mixing_prob = None

    # Setup components.
    if 'synthesis' not in components:
        components.synthesis = tflib.Network('G_synthesis', func_name=G_synthesis, **kwargs)
    num_layers = components.synthesis.input_shape[1]
    dlatent_size = components.synthesis.input_shape[2]
    if 'mapping' not in components:
        components.mapping = tflib.Network('G_mapping', func_name=G_mapping, dlatent_broadcast=num_layers, **kwargs)

    # Setup variables.
    lod_in = tf.get_variable('lod', initializer=np.float32(0), trainable=False)
    dlatent_avg = tf.get_variable('dlatent_avg', shape=[dlatent_size], initializer=tf.initializers.zeros(), trainable=False)

    # Evaluate mapping network.
    dlatents = components.mapping.get_output_for(latents_in, labels_in, **kwargs)

    # Update moving average of W.
    if dlatent_avg_beta is not None:
        with tf.variable_scope('DlatentAvg'):
            batch_avg = tf.reduce_mean(dlatents[:, 0], axis=0)
            update_op = tf.assign(dlatent_avg, tflib.lerp(batch_avg, dlatent_avg, dlatent_avg_beta))
            with tf.control_dependencies([update_op]):
                dlatents = tf.identity(dlatents)

    # Perform style mixing regularization.
    if style_mixing_prob is not None:
        with tf.name_scope('StyleMix'):
            latents2 = tf.random_normal(tf.shape(latents_in))
            dlatents2 = components.mapping.get_output_for(latents2, labels_in, **kwargs)
            layer_idx = np.arange(num_layers)[np.newaxis, :, np.newaxis]
            cur_layers = num_layers - tf.cast(lod_in, tf.int32) * 2
            mixing_cutoff = tf.cond(
                tf.random_uniform([], 0.0, 1.0) < style_mixing_prob,
                lambda: tf.random_uniform([], 1, cur_layers, dtype=tf.int32),
                lambda: cur_layers)
            dlatents = tf.where(tf.broadcast_to(layer_idx < mixing_cutoff, tf.shape(dlatents)), dlatents, dlatents2)

    # Apply truncation trick.
    if truncation_psi is not None and truncation_cutoff is not None:
        with tf.variable_scope('Truncation'):
            layer_idx = np.arange(num_layers)[np.newaxis, :, np.newaxis]
            ones = np.ones(layer_idx.shape, dtype=np.float32)
            coefs = tf.where(layer_idx < truncation_cutoff, truncation_psi * ones, ones)
            dlatents = tflib.lerp(dlatent_avg, dlatents, coefs)

    # Evaluate synthesis network.
    with tf.control_dependencies([tf.assign(components.synthesis.find_var('lod'), lod_in)]):
        images_out = components.synthesis.get_output_for(dlatents, force_clean_graph=is_template_graph, **kwargs)
    return tf.identity(images_out, name='images_out')

#----------------------------------------------------------------------------
# Mapping network used in the StyleGAN paper.

def G_mapping(
    latents_in,                             # First input: Latent vectors (Z) [minibatch, latent_size].
    labels_in,                              # Second input: Conditioning labels [minibatch, label_size].
    latent_size             = 512,          # Latent vector (Z) dimensionality.
    label_size              = 0,            # Label dimensionality, 0 if no labels.
    dlatent_size            = 512,          # Disentangled latent (W) dimensionality.
    dlatent_broadcast       = None,         # Output disentangled latent (W) as [minibatch, dlatent_size] or [minibatch, dlatent_broadcast, dlatent_size].
    mapping_layers          = 8,            # Number of mapping layers.
    mapping_fmaps           = 512,          # Number of activations in the mapping layers.
    mapping_lrmul           = 0.01,         # Learning rate multiplier for the mapping layers.
    mapping_nonlinearity    = 'lrelu',      # Activation function: 'relu', 'lrelu'.
    use_wscale              = True,         # Enable equalized learning rate?
    normalize_latents       = True,         # Normalize latent vectors (Z) before feeding them to the mapping layers?
    dtype                   = 'float32',    # Data type to use for activations and outputs.
    **_kwargs):                             # Ignore unrecognized keyword args.

    act, gain = {'relu': (tf.nn.relu, np.sqrt(2)), 'lrelu': (leaky_relu, np.sqrt(2))}[mapping_nonlinearity]

    # Inputs.
    latents_in.set_shape([None, latent_size])
    labels_in.set_shape([None, label_size])
    latents_in = tf.cast(latents_in, dtype)
    labels_in = tf.cast(labels_in, dtype)
    x = latents_in

    # Embed labels and concatenate them with latents.
    if label_size:
        with tf.variable_scope('LabelConcat'):
            w = tf.get_variable('weight', shape=[label_size, latent_size], initializer=tf.initializers.random_normal())
            y = tf.matmul(labels_in, tf.cast(w, dtype))
            x = tf.concat([x, y], axis=1)

    # Normalize latents.
    if normalize_latents:
        x = pixel_norm(x)

    # Mapping layers.
    for layer_idx in range(mapping_layers):
        with tf.variable_scope('Dense%d' % layer_idx):
            fmaps = dlatent_size if layer_idx == mapping_layers - 1 else mapping_fmaps
            x = dense(x, fmaps=fmaps, gain=gain, use_wscale=use_wscale, lrmul=mapping_lrmul)
            x = apply_bias(x, lrmul=mapping_lrmul)
            x = act(x)

    # Broadcast.
    if dlatent_broadcast is not None:
        with tf.variable_scope('Broadcast'):
            x = tf.tile(x[:, np.newaxis], [1, dlatent_broadcast, 1])

    # Output.
    assert x.dtype == tf.as_dtype(dtype)
    return tf.identity(x, name='dlatents_out')

#----------------------------------------------------------------------------
# Synthesis network used in the StyleGAN paper.

def G_synthesis(
    dlatents_in,                        # Input: Disentangled latents (W) [minibatch, num_layers, dlatent_size].
    dlatent_size        = 512,          # Disentangled latent (W) dimensionality.
    num_channels        = 3,            # Number of output color channels.
    resolution          = 1024,         # Output resolution.
    fmap_base           = 8192,         # Overall multiplier for the number of feature maps.
    fmap_decay          = 1.0,          # log2 feature map reduction when doubling the resolution.
    fmap_max            = 512,          # Maximum number of feature maps in any layer.
    use_styles          = True,         # Enable style inputs?
    const_input_layer   = True,         # First layer is a learned constant?
    use_noise           = True,         # Enable noise inputs?
    randomize_noise     = True,         # True = randomize noise inputs every time (non-deterministic), False = read noise inputs from variables.
    nonlinearity        = 'lrelu',      # Activation function: 'relu', 'lrelu'
    use_wscale          = True,         # Enable equalized learning rate?
    use_pixel_norm      = False,        # Enable pixelwise feature vector normalization?
    use_instance_norm   = True,         # Enable instance normalization?
    dtype               = 'float32',    # Data type to use for activations and outputs.
    fused_scale         = 'auto',       # True = fused convolution + scaling, False = separate ops, 'auto' = decide automatically.
    blur_filter         = [1,2,1],      # Low-pass filter to apply when resampling activations. None = no filtering.
    structure           = 'auto',       # 'fixed' = no progressive growing, 'linear' = human-readable, 'recursive' = efficient, 'auto' = select automatically.
    is_template_graph   = False,        # True = template graph constructed by the Network class, False = actual evaluation.
    force_clean_graph   = False,        # True = construct a clean graph that looks nice in TensorBoard, False = default behavior.
    **_kwargs):                         # Ignore unrecognized keyword args.

    resolution_log2 = int(np.log2(resolution))
    assert resolution == 2**resolution_log2 and resolution >= 4
    def nf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
    def blur(x): return blur2d(x, blur_filter) if blur_filter else x
    if is_template_graph: force_clean_graph = True
    if force_clean_graph: randomize_noise = False
    if structure == 'auto': structure = 'linear' if force_clean_graph else 'recursive'
    act, gain = {'relu': (tf.nn.relu, np.sqrt(2)), 'lrelu': (leaky_relu, np.sqrt(2))}[nonlinearity]
    num_layers = resolution_log2 * 2 - 2
    num_styles = num_layers if use_styles else 1
    images_out = None

    # Primary inputs.
    dlatents_in.set_shape([None, num_styles, dlatent_size])
    dlatents_in = tf.cast(dlatents_in, dtype)
    lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0), trainable=False), dtype)

    # Noise inputs.
    noise_inputs = []
    if use_noise:
        for layer_idx in range(num_layers):
            res = layer_idx // 2 + 2
            shape = [1, use_noise, 2**res, 2**res]
            noise_inputs.append(tf.get_variable('noise%d' % layer_idx, shape=shape, initializer=tf.initializers.random_normal(), trainable=False))

    # Things to do at the end of each layer.
    def layer_epilogue(x, layer_idx):
        if use_noise:
            x = apply_noise(x, noise_inputs[layer_idx], randomize_noise=randomize_noise)
        x = apply_bias(x)
        x = act(x)
        if use_pixel_norm:
            x = pixel_norm(x)
        if use_instance_norm:
            x = instance_norm(x)
        if use_styles:
            x = style_mod(x, dlatents_in[:, layer_idx], use_wscale=use_wscale)
        return x

    # Early layers.
    with tf.variable_scope('4x4'):
        if const_input_layer:
            with tf.variable_scope('Const'):
                x = tf.get_variable('const', shape=[1, nf(1), 4, 4], initializer=tf.initializers.ones())
                x = layer_epilogue(tf.tile(tf.cast(x, dtype), [tf.shape(dlatents_in)[0], 1, 1, 1]), 0)
        else:
            with tf.variable_scope('Dense'):
                x = dense(dlatents_in[:, 0], fmaps=nf(1)*16, gain=gain/4, use_wscale=use_wscale) # tweak gain to match the official implementation of Progressing GAN
                x = layer_epilogue(tf.reshape(x, [-1, nf(1), 4, 4]), 0)
        with tf.variable_scope('Conv'):
            x = layer_epilogue(conv2d(x, fmaps=nf(1), kernel=3, gain=gain, use_wscale=use_wscale), 1)

    # Building blocks for remaining layers.
    def block(res, x): # res = 3..resolution_log2
        with tf.variable_scope('%dx%d' % (2**res, 2**res)):
            with tf.variable_scope('Conv0_up'):
                x = layer_epilogue(blur(upscale2d_conv2d(x, fmaps=nf(res-1), kernel=3, gain=gain, use_wscale=use_wscale, fused_scale=fused_scale)), res*2-4)
            with tf.variable_scope('Conv1'):
                x = layer_epilogue(conv2d(x, fmaps=nf(res-1), kernel=3, gain=gain, use_wscale=use_wscale), res*2-3)
            return x
    def torgb(res, x): # res = 2..resolution_log2
        lod = resolution_log2 - res
        with tf.variable_scope('ToRGB_lod%d' % lod):
            return apply_bias(conv2d(x, fmaps=num_channels, kernel=1, gain=1, use_wscale=use_wscale))

    # Fixed structure: simple and efficient, but does not support progressive growing.
    if structure == 'fixed':
        for res in range(3, resolution_log2 + 1):
            x = block(res, x)
        images_out = torgb(resolution_log2, x)

    # Linear structure: simple but inefficient.
    if structure == 'linear':
        images_out = torgb(2, x)
        for res in range(3, resolution_log2 + 1):
            lod = resolution_log2 - res
            x = block(res, x)
            img = torgb(res, x)
            images_out = upscale2d(images_out)
            with tf.variable_scope('Grow_lod%d' % lod):
                images_out = tflib.lerp_clip(img, images_out, lod_in - lod)

    # Recursive structure: complex but efficient.
    if structure == 'recursive':
        def cset(cur_lambda, new_cond, new_lambda):
            return lambda: tf.cond(new_cond, new_lambda, cur_lambda)
        def grow(x, res, lod):
            y = block(res, x)
            img = lambda: upscale2d(torgb(res, y), 2**lod)
            img = cset(img, (lod_in > lod), lambda: upscale2d(tflib.lerp(torgb(res, y), upscale2d(torgb(res - 1, x)), lod_in - lod), 2**lod))
            if lod > 0: img = cset(img, (lod_in < lod), lambda: grow(y, res + 1, lod - 1))
            return img()
        images_out = grow(x, 3, resolution_log2 - 3)

    assert images_out.dtype == tf.as_dtype(dtype)
    return tf.identity(images_out, name='images_out')

#----------------------------------------------------------------------------
# Discriminator used in the StyleGAN paper.

def D_basic(
    images_in,                          # First input: Images [minibatch, channel, height, width].
    labels_in,                          # Second input: Labels [minibatch, label_size].
    num_channels        = 1,            # Number of input color channels. Overridden based on dataset.
    resolution          = 32,           # Input resolution. Overridden based on dataset.
    label_size          = 0,            # Dimensionality of the labels, 0 if no labels. Overridden based on dataset.
    fmap_base           = 8192,         # Overall multiplier for the number of feature maps.
    fmap_decay          = 1.0,          # log2 feature map reduction when doubling the resolution.
    fmap_max            = 512,          # Maximum number of feature maps in any layer.
    nonlinearity        = 'lrelu',      # Activation function: 'relu', 'lrelu',
    use_wscale          = True,         # Enable equalized learning rate?
    mbstd_group_size    = 4,            # Group size for the minibatch standard deviation layer, 0 = disable.
    mbstd_num_features  = 1,            # Number of features for the minibatch standard deviation layer.
    dtype               = 'float32',    # Data type to use for activations and outputs.
    fused_scale         = 'auto',       # True = fused convolution + scaling, False = separate ops, 'auto' = decide automatically.
    blur_filter         = [1,2,1],      # Low-pass filter to apply when resampling activations. None = no filtering.
    structure           = 'auto',       # 'fixed' = no progressive growing, 'linear' = human-readable, 'recursive' = efficient, 'auto' = select automatically.
    is_template_graph   = False,        # True = template graph constructed by the Network class, False = actual evaluation.
    **_kwargs):                         # Ignore unrecognized keyword args.

    resolution_log2 = int(np.log2(resolution))
    assert resolution == 2**resolution_log2 and resolution >= 4
    def nf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
    def blur(x): return blur2d(x, blur_filter) if blur_filter else x
    if structure == 'auto': structure = 'linear' if is_template_graph else 'recursive'
    act, gain = {'relu': (tf.nn.relu, np.sqrt(2)), 'lrelu': (leaky_relu, np.sqrt(2))}[nonlinearity]

    images_in.set_shape([None, num_channels, resolution, resolution])
    labels_in.set_shape([None, label_size])
    images_in = tf.cast(images_in, dtype)
    labels_in = tf.cast(labels_in, dtype)
    lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0.0), trainable=False), dtype)
    scores_out = None

    # Building blocks.
    def fromrgb(x, res): # res = 2..resolution_log2
        with tf.variable_scope('FromRGB_lod%d' % (resolution_log2 - res)):
            return act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=1, gain=gain, use_wscale=use_wscale)))
    def block(x, res): # res = 2..resolution_log2
        with tf.variable_scope('%dx%d' % (2**res, 2**res)):
            if res >= 3: # 8x8 and up
                with tf.variable_scope('Conv0'):
                    x = act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, gain=gain, use_wscale=use_wscale)))
                with tf.variable_scope('Conv1_down'):
                    x = act(apply_bias(conv2d_downscale2d(blur(x), fmaps=nf(res-2), kernel=3, gain=gain, use_wscale=use_wscale, fused_scale=fused_scale)))
            else: # 4x4
                if mbstd_group_size > 1:
                    x = minibatch_stddev_layer(x, mbstd_group_size, mbstd_num_features)
                with tf.variable_scope('Conv'):
                    x = act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, gain=gain, use_wscale=use_wscale)))
                with tf.variable_scope('Dense0'):
                    x = act(apply_bias(dense(x, fmaps=nf(res-2), gain=gain, use_wscale=use_wscale)))
                with tf.variable_scope('Dense1'):
                    x = apply_bias(dense(x, fmaps=max(label_size, 1), gain=1, use_wscale=use_wscale))
            return x

    # Fixed structure: simple and efficient, but does not support progressive growing.
    if structure == 'fixed':
        x = fromrgb(images_in, resolution_log2)
        for res in range(resolution_log2, 2, -1):
            x = block(x, res)
        scores_out = block(x, 2)

    # Linear structure: simple but inefficient.
    if structure == 'linear':
        img = images_in
        x = fromrgb(img, resolution_log2)
        for res in range(resolution_log2, 2, -1):
            lod = resolution_log2 - res
            x = block(x, res)
            img = downscale2d(img)
            y = fromrgb(img, res - 1)
            with tf.variable_scope('Grow_lod%d' % lod):
                x = tflib.lerp_clip(x, y, lod_in - lod)
        scores_out = block(x, 2)

    # Recursive structure: complex but efficient.
    if structure == 'recursive':
        def cset(cur_lambda, new_cond, new_lambda):
            return lambda: tf.cond(new_cond, new_lambda, cur_lambda)
        def grow(res, lod):
            x = lambda: fromrgb(downscale2d(images_in, 2**lod), res)
            if lod > 0: x = cset(x, (lod_in < lod), lambda: grow(res + 1, lod - 1))
            x = block(x(), res); y = lambda: x
            if res > 2: y = cset(y, (lod_in > lod), lambda: tflib.lerp(x, fromrgb(downscale2d(images_in, 2**(lod+1)), res - 1), lod_in - lod))
            return y()
        scores_out = grow(2, resolution_log2 - 2)

    # Label conditioning from "Which Training Methods for GANs do actually Converge?"
    if label_size:
        with tf.variable_scope('LabelSwitch'):
            scores_out = tf.reduce_sum(scores_out * labels_in, axis=1, keepdims=True)

    assert scores_out.dtype == tf.as_dtype(dtype)
    scores_out = tf.identity(scores_out, name='scores_out')
    return scores_out

#----------------------------------------------------------------------------