File size: 17,575 Bytes
97069e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

"""Network architectures used in the ProGAN paper."""

import numpy as np
import tensorflow as tf

# NOTE: Do not import any application-specific modules here!
# Specify all network parameters as kwargs.

#----------------------------------------------------------------------------

def lerp(a, b, t): return a + (b - a) * t
def lerp_clip(a, b, t): return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0)
def cset(cur_lambda, new_cond, new_lambda): return lambda: tf.cond(new_cond, new_lambda, cur_lambda)

#----------------------------------------------------------------------------
# Get/create weight tensor for a convolutional or fully-connected layer.

def get_weight(shape, gain=np.sqrt(2), use_wscale=False):
    fan_in = np.prod(shape[:-1]) # [kernel, kernel, fmaps_in, fmaps_out] or [in, out]
    std = gain / np.sqrt(fan_in) # He init
    if use_wscale:
        wscale = tf.constant(np.float32(std), name='wscale')
        w = tf.get_variable('weight', shape=shape, initializer=tf.initializers.random_normal()) * wscale
    else:
        w = tf.get_variable('weight', shape=shape, initializer=tf.initializers.random_normal(0, std))
    return w

#----------------------------------------------------------------------------
# Fully-connected layer.

def dense(x, fmaps, gain=np.sqrt(2), use_wscale=False):
    if len(x.shape) > 2:
        x = tf.reshape(x, [-1, np.prod([d.value for d in x.shape[1:]])])
    w = get_weight([x.shape[1].value, fmaps], gain=gain, use_wscale=use_wscale)
    w = tf.cast(w, x.dtype)
    return tf.matmul(x, w)

#----------------------------------------------------------------------------
# Convolutional layer.

def conv2d(x, fmaps, kernel, gain=np.sqrt(2), use_wscale=False):
    assert kernel >= 1 and kernel % 2 == 1
    w = get_weight([kernel, kernel, x.shape[1].value, fmaps], gain=gain, use_wscale=use_wscale)
    w = tf.cast(w, x.dtype)
    return tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='SAME', data_format='NCHW')

#----------------------------------------------------------------------------
# Apply bias to the given activation tensor.

def apply_bias(x):
    b = tf.get_variable('bias', shape=[x.shape[1]], initializer=tf.initializers.zeros())
    b = tf.cast(b, x.dtype)
    if len(x.shape) == 2:
        return x + b
    return x + tf.reshape(b, [1, -1, 1, 1])

#----------------------------------------------------------------------------
# Leaky ReLU activation. Same as tf.nn.leaky_relu, but supports FP16.

def leaky_relu(x, alpha=0.2):
    with tf.name_scope('LeakyRelu'):
        alpha = tf.constant(alpha, dtype=x.dtype, name='alpha')
        return tf.maximum(x * alpha, x)

#----------------------------------------------------------------------------
# Nearest-neighbor upscaling layer.

def upscale2d(x, factor=2):
    assert isinstance(factor, int) and factor >= 1
    if factor == 1: return x
    with tf.variable_scope('Upscale2D'):
        s = x.shape
        x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
        x = tf.tile(x, [1, 1, 1, factor, 1, factor])
        x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
        return x

#----------------------------------------------------------------------------
# Fused upscale2d + conv2d.
# Faster and uses less memory than performing the operations separately.

def upscale2d_conv2d(x, fmaps, kernel, gain=np.sqrt(2), use_wscale=False):
    assert kernel >= 1 and kernel % 2 == 1
    w = get_weight([kernel, kernel, x.shape[1].value, fmaps], gain=gain, use_wscale=use_wscale)
    w = tf.transpose(w, [0, 1, 3, 2]) # [kernel, kernel, fmaps_out, fmaps_in]
    w = tf.pad(w, [[1,1], [1,1], [0,0], [0,0]], mode='CONSTANT')
    w = tf.add_n([w[1:, 1:], w[:-1, 1:], w[1:, :-1], w[:-1, :-1]])
    w = tf.cast(w, x.dtype)
    os = [tf.shape(x)[0], fmaps, x.shape[2] * 2, x.shape[3] * 2]
    return tf.nn.conv2d_transpose(x, w, os, strides=[1,1,2,2], padding='SAME', data_format='NCHW')

#----------------------------------------------------------------------------
# Box filter downscaling layer.

def downscale2d(x, factor=2):
    assert isinstance(factor, int) and factor >= 1
    if factor == 1: return x
    with tf.variable_scope('Downscale2D'):
        ksize = [1, 1, factor, factor]
        return tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding='VALID', data_format='NCHW') # NOTE: requires tf_config['graph_options.place_pruned_graph'] = True

#----------------------------------------------------------------------------
# Fused conv2d + downscale2d.
# Faster and uses less memory than performing the operations separately.

def conv2d_downscale2d(x, fmaps, kernel, gain=np.sqrt(2), use_wscale=False):
    assert kernel >= 1 and kernel % 2 == 1
    w = get_weight([kernel, kernel, x.shape[1].value, fmaps], gain=gain, use_wscale=use_wscale)
    w = tf.pad(w, [[1,1], [1,1], [0,0], [0,0]], mode='CONSTANT')
    w = tf.add_n([w[1:, 1:], w[:-1, 1:], w[1:, :-1], w[:-1, :-1]]) * 0.25
    w = tf.cast(w, x.dtype)
    return tf.nn.conv2d(x, w, strides=[1,1,2,2], padding='SAME', data_format='NCHW')

#----------------------------------------------------------------------------
# Pixelwise feature vector normalization.

def pixel_norm(x, epsilon=1e-8):
    with tf.variable_scope('PixelNorm'):
        return x * tf.rsqrt(tf.reduce_mean(tf.square(x), axis=1, keepdims=True) + epsilon)

#----------------------------------------------------------------------------
# Minibatch standard deviation.

def minibatch_stddev_layer(x, group_size=4, num_new_features=1):
    with tf.variable_scope('MinibatchStddev'):
        group_size = tf.minimum(group_size, tf.shape(x)[0])     # Minibatch must be divisible by (or smaller than) group_size.
        s = x.shape                                             # [NCHW]  Input shape.
        y = tf.reshape(x, [group_size, -1, num_new_features, s[1]//num_new_features, s[2], s[3]])   # [GMncHW] Split minibatch into M groups of size G. Split channels into n channel groups c.
        y = tf.cast(y, tf.float32)                              # [GMncHW] Cast to FP32.
        y -= tf.reduce_mean(y, axis=0, keepdims=True)           # [GMncHW] Subtract mean over group.
        y = tf.reduce_mean(tf.square(y), axis=0)                # [MncHW]  Calc variance over group.
        y = tf.sqrt(y + 1e-8)                                   # [MncHW]  Calc stddev over group.
        y = tf.reduce_mean(y, axis=[2,3,4], keepdims=True)      # [Mn111]  Take average over fmaps and pixels.
        y = tf.reduce_mean(y, axis=[2])                         # [Mn11] Split channels into c channel groups
        y = tf.cast(y, x.dtype)                                 # [Mn11]  Cast back to original data type.
        y = tf.tile(y, [group_size, 1, s[2], s[3]])             # [NnHW]  Replicate over group and pixels.
        return tf.concat([x, y], axis=1)                        # [NCHW]  Append as new fmap.

#----------------------------------------------------------------------------
# Networks used in the ProgressiveGAN paper.

def G_paper(
    latents_in,                         # First input: Latent vectors [minibatch, latent_size].
    labels_in,                          # Second input: Labels [minibatch, label_size].
    num_channels        = 1,            # Number of output color channels. Overridden based on dataset.
    resolution          = 32,           # Output resolution. Overridden based on dataset.
    label_size          = 0,            # Dimensionality of the labels, 0 if no labels. Overridden based on dataset.
    fmap_base           = 8192,         # Overall multiplier for the number of feature maps.
    fmap_decay          = 1.0,          # log2 feature map reduction when doubling the resolution.
    fmap_max            = 512,          # Maximum number of feature maps in any layer.
    latent_size         = None,         # Dimensionality of the latent vectors. None = min(fmap_base, fmap_max).
    normalize_latents   = True,         # Normalize latent vectors before feeding them to the network?
    use_wscale          = True,         # Enable equalized learning rate?
    use_pixelnorm       = True,         # Enable pixelwise feature vector normalization?
    pixelnorm_epsilon   = 1e-8,         # Constant epsilon for pixelwise feature vector normalization.
    use_leakyrelu       = True,         # True = leaky ReLU, False = ReLU.
    dtype               = 'float32',    # Data type to use for activations and outputs.
    fused_scale         = True,         # True = use fused upscale2d + conv2d, False = separate upscale2d layers.
    structure           = None,         # 'linear' = human-readable, 'recursive' = efficient, None = select automatically.
    is_template_graph   = False,        # True = template graph constructed by the Network class, False = actual evaluation.
    **_kwargs):                         # Ignore unrecognized keyword args.

    resolution_log2 = int(np.log2(resolution))
    assert resolution == 2**resolution_log2 and resolution >= 4
    def nf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
    def PN(x): return pixel_norm(x, epsilon=pixelnorm_epsilon) if use_pixelnorm else x
    if latent_size is None: latent_size = nf(0)
    if structure is None: structure = 'linear' if is_template_graph else 'recursive'
    act = leaky_relu if use_leakyrelu else tf.nn.relu

    latents_in.set_shape([None, latent_size])
    labels_in.set_shape([None, label_size])
    combo_in = tf.cast(tf.concat([latents_in, labels_in], axis=1), dtype)
    lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0.0), trainable=False), dtype)
    images_out = None

    # Building blocks.
    def block(x, res): # res = 2..resolution_log2
        with tf.variable_scope('%dx%d' % (2**res, 2**res)):
            if res == 2: # 4x4
                if normalize_latents: x = pixel_norm(x, epsilon=pixelnorm_epsilon)
                with tf.variable_scope('Dense'):
                    x = dense(x, fmaps=nf(res-1)*16, gain=np.sqrt(2)/4, use_wscale=use_wscale) # override gain to match the original Theano implementation
                    x = tf.reshape(x, [-1, nf(res-1), 4, 4])
                    x = PN(act(apply_bias(x)))
                with tf.variable_scope('Conv'):
                    x = PN(act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale))))
            else: # 8x8 and up
                if fused_scale:
                    with tf.variable_scope('Conv0_up'):
                        x = PN(act(apply_bias(upscale2d_conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale))))
                else:
                    x = upscale2d(x)
                    with tf.variable_scope('Conv0'):
                        x = PN(act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale))))
                with tf.variable_scope('Conv1'):
                    x = PN(act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale))))
            return x
    def torgb(x, res): # res = 2..resolution_log2
        lod = resolution_log2 - res
        with tf.variable_scope('ToRGB_lod%d' % lod):
            return apply_bias(conv2d(x, fmaps=num_channels, kernel=1, gain=1, use_wscale=use_wscale))

    # Linear structure: simple but inefficient.
    if structure == 'linear':
        x = block(combo_in, 2)
        images_out = torgb(x, 2)
        for res in range(3, resolution_log2 + 1):
            lod = resolution_log2 - res
            x = block(x, res)
            img = torgb(x, res)
            images_out = upscale2d(images_out)
            with tf.variable_scope('Grow_lod%d' % lod):
                images_out = lerp_clip(img, images_out, lod_in - lod)

    # Recursive structure: complex but efficient.
    if structure == 'recursive':
        def grow(x, res, lod):
            y = block(x, res)
            img = lambda: upscale2d(torgb(y, res), 2**lod)
            if res > 2: img = cset(img, (lod_in > lod), lambda: upscale2d(lerp(torgb(y, res), upscale2d(torgb(x, res - 1)), lod_in - lod), 2**lod))
            if lod > 0: img = cset(img, (lod_in < lod), lambda: grow(y, res + 1, lod - 1))
            return img()
        images_out = grow(combo_in, 2, resolution_log2 - 2)

    assert images_out.dtype == tf.as_dtype(dtype)
    images_out = tf.identity(images_out, name='images_out')
    return images_out


def D_paper(
    images_in,                          # First input: Images [minibatch, channel, height, width].
    labels_in,                          # Second input: Labels [minibatch, label_size].
    num_channels        = 1,            # Number of input color channels. Overridden based on dataset.
    resolution          = 32,           # Input resolution. Overridden based on dataset.
    label_size          = 0,            # Dimensionality of the labels, 0 if no labels. Overridden based on dataset.
    fmap_base           = 8192,         # Overall multiplier for the number of feature maps.
    fmap_decay          = 1.0,          # log2 feature map reduction when doubling the resolution.
    fmap_max            = 512,          # Maximum number of feature maps in any layer.
    use_wscale          = True,         # Enable equalized learning rate?
    mbstd_group_size    = 4,            # Group size for the minibatch standard deviation layer, 0 = disable.
    dtype               = 'float32',    # Data type to use for activations and outputs.
    fused_scale         = True,         # True = use fused conv2d + downscale2d, False = separate downscale2d layers.
    structure           = None,         # 'linear' = human-readable, 'recursive' = efficient, None = select automatically
    is_template_graph   = False,        # True = template graph constructed by the Network class, False = actual evaluation.
    **_kwargs):                         # Ignore unrecognized keyword args.

    resolution_log2 = int(np.log2(resolution))
    assert resolution == 2**resolution_log2 and resolution >= 4
    def nf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
    if structure is None: structure = 'linear' if is_template_graph else 'recursive'
    act = leaky_relu

    images_in.set_shape([None, num_channels, resolution, resolution])
    labels_in.set_shape([None, label_size])
    images_in = tf.cast(images_in, dtype)
    labels_in = tf.cast(labels_in, dtype)
    lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0.0), trainable=False), dtype)
    scores_out = None

    # Building blocks.
    def fromrgb(x, res): # res = 2..resolution_log2
        with tf.variable_scope('FromRGB_lod%d' % (resolution_log2 - res)):
            return act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=1, use_wscale=use_wscale)))
    def block(x, res): # res = 2..resolution_log2
        with tf.variable_scope('%dx%d' % (2**res, 2**res)):
            if res >= 3: # 8x8 and up
                with tf.variable_scope('Conv0'):
                    x = act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale)))
                if fused_scale:
                    with tf.variable_scope('Conv1_down'):
                        x = act(apply_bias(conv2d_downscale2d(x, fmaps=nf(res-2), kernel=3, use_wscale=use_wscale)))
                else:
                    with tf.variable_scope('Conv1'):
                        x = act(apply_bias(conv2d(x, fmaps=nf(res-2), kernel=3, use_wscale=use_wscale)))
                    x = downscale2d(x)
            else: # 4x4
                if mbstd_group_size > 1:
                    x = minibatch_stddev_layer(x, mbstd_group_size)
                with tf.variable_scope('Conv'):
                    x = act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale)))
                with tf.variable_scope('Dense0'):
                    x = act(apply_bias(dense(x, fmaps=nf(res-2), use_wscale=use_wscale)))
                with tf.variable_scope('Dense1'):
                    x = apply_bias(dense(x, fmaps=1, gain=1, use_wscale=use_wscale))
            return x

    # Linear structure: simple but inefficient.
    if structure == 'linear':
        img = images_in
        x = fromrgb(img, resolution_log2)
        for res in range(resolution_log2, 2, -1):
            lod = resolution_log2 - res
            x = block(x, res)
            img = downscale2d(img)
            y = fromrgb(img, res - 1)
            with tf.variable_scope('Grow_lod%d' % lod):
                x = lerp_clip(x, y, lod_in - lod)
        scores_out = block(x, 2)

    # Recursive structure: complex but efficient.
    if structure == 'recursive':
        def grow(res, lod):
            x = lambda: fromrgb(downscale2d(images_in, 2**lod), res)
            if lod > 0: x = cset(x, (lod_in < lod), lambda: grow(res + 1, lod - 1))
            x = block(x(), res); y = lambda: x
            if res > 2: y = cset(y, (lod_in > lod), lambda: lerp(x, fromrgb(downscale2d(images_in, 2**(lod+1)), res - 1), lod_in - lod))
            return y()
        scores_out = grow(2, resolution_log2 - 2)

    assert scores_out.dtype == tf.as_dtype(dtype)
    scores_out = tf.identity(scores_out, name='scores_out')
    return scores_out

#----------------------------------------------------------------------------