Spaces:
Runtime error
Runtime error
File size: 20,518 Bytes
97069e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
# Copyright 2020 Erik Härkönen. All rights reserved.
# This file is licensed to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy
# of the License at http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from pathlib import Path
import requests
import pickle
import sys
import numpy as np
# Reimplementation of StyleGAN in PyTorch
# Source: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb
class MyLinear(nn.Module):
"""Linear layer with equalized learning rate and custom learning rate multiplier."""
def __init__(self, input_size, output_size, gain=2**(0.5), use_wscale=False, lrmul=1, bias=True):
super().__init__()
he_std = gain * input_size**(-0.5) # He init
# Equalized learning rate and custom learning rate multiplier.
if use_wscale:
init_std = 1.0 / lrmul
self.w_mul = he_std * lrmul
else:
init_std = he_std / lrmul
self.w_mul = lrmul
self.weight = torch.nn.Parameter(torch.randn(output_size, input_size) * init_std)
if bias:
self.bias = torch.nn.Parameter(torch.zeros(output_size))
self.b_mul = lrmul
else:
self.bias = None
def forward(self, x):
bias = self.bias
if bias is not None:
bias = bias * self.b_mul
return F.linear(x, self.weight * self.w_mul, bias)
class MyConv2d(nn.Module):
"""Conv layer with equalized learning rate and custom learning rate multiplier."""
def __init__(self, input_channels, output_channels, kernel_size, gain=2**(0.5), use_wscale=False, lrmul=1, bias=True,
intermediate=None, upscale=False):
super().__init__()
if upscale:
self.upscale = Upscale2d()
else:
self.upscale = None
he_std = gain * (input_channels * kernel_size ** 2) ** (-0.5) # He init
self.kernel_size = kernel_size
if use_wscale:
init_std = 1.0 / lrmul
self.w_mul = he_std * lrmul
else:
init_std = he_std / lrmul
self.w_mul = lrmul
self.weight = torch.nn.Parameter(torch.randn(output_channels, input_channels, kernel_size, kernel_size) * init_std)
if bias:
self.bias = torch.nn.Parameter(torch.zeros(output_channels))
self.b_mul = lrmul
else:
self.bias = None
self.intermediate = intermediate
def forward(self, x):
bias = self.bias
if bias is not None:
bias = bias * self.b_mul
have_convolution = False
if self.upscale is not None and min(x.shape[2:]) * 2 >= 128:
# this is the fused upscale + conv from StyleGAN, sadly this seems incompatible with the non-fused way
# this really needs to be cleaned up and go into the conv...
w = self.weight * self.w_mul
w = w.permute(1, 0, 2, 3)
# probably applying a conv on w would be more efficient. also this quadruples the weight (average)?!
w = F.pad(w, (1,1,1,1))
w = w[:, :, 1:, 1:]+ w[:, :, :-1, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, :-1]
x = F.conv_transpose2d(x, w, stride=2, padding=(w.size(-1)-1)//2)
have_convolution = True
elif self.upscale is not None:
x = self.upscale(x)
if not have_convolution and self.intermediate is None:
return F.conv2d(x, self.weight * self.w_mul, bias, padding=self.kernel_size//2)
elif not have_convolution:
x = F.conv2d(x, self.weight * self.w_mul, None, padding=self.kernel_size//2)
if self.intermediate is not None:
x = self.intermediate(x)
if bias is not None:
x = x + bias.view(1, -1, 1, 1)
return x
class NoiseLayer(nn.Module):
"""adds noise. noise is per pixel (constant over channels) with per-channel weight"""
def __init__(self, channels):
super().__init__()
self.weight = nn.Parameter(torch.zeros(channels))
self.noise = None
def forward(self, x, noise=None):
if noise is None and self.noise is None:
noise = torch.randn(x.size(0), 1, x.size(2), x.size(3), device=x.device, dtype=x.dtype)
elif noise is None:
# here is a little trick: if you get all the noiselayers and set each
# modules .noise attribute, you can have pre-defined noise.
# Very useful for analysis
noise = self.noise
x = x + self.weight.view(1, -1, 1, 1) * noise
return x
class StyleMod(nn.Module):
def __init__(self, latent_size, channels, use_wscale):
super(StyleMod, self).__init__()
self.lin = MyLinear(latent_size,
channels * 2,
gain=1.0, use_wscale=use_wscale)
def forward(self, x, latent):
style = self.lin(latent) # style => [batch_size, n_channels*2]
shape = [-1, 2, x.size(1)] + (x.dim() - 2) * [1]
style = style.view(shape) # [batch_size, 2, n_channels, ...]
x = x * (style[:, 0] + 1.) + style[:, 1]
return x
class PixelNormLayer(nn.Module):
def __init__(self, epsilon=1e-8):
super().__init__()
self.epsilon = epsilon
def forward(self, x):
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + self.epsilon)
class BlurLayer(nn.Module):
def __init__(self, kernel=[1, 2, 1], normalize=True, flip=False, stride=1):
super(BlurLayer, self).__init__()
kernel=[1, 2, 1]
kernel = torch.tensor(kernel, dtype=torch.float32)
kernel = kernel[:, None] * kernel[None, :]
kernel = kernel[None, None]
if normalize:
kernel = kernel / kernel.sum()
if flip:
kernel = kernel[:, :, ::-1, ::-1]
self.register_buffer('kernel', kernel)
self.stride = stride
def forward(self, x):
# expand kernel channels
kernel = self.kernel.expand(x.size(1), -1, -1, -1)
x = F.conv2d(
x,
kernel,
stride=self.stride,
padding=int((self.kernel.size(2)-1)/2),
groups=x.size(1)
)
return x
def upscale2d(x, factor=2, gain=1):
assert x.dim() == 4
if gain != 1:
x = x * gain
if factor != 1:
shape = x.shape
x = x.view(shape[0], shape[1], shape[2], 1, shape[3], 1).expand(-1, -1, -1, factor, -1, factor)
x = x.contiguous().view(shape[0], shape[1], factor * shape[2], factor * shape[3])
return x
class Upscale2d(nn.Module):
def __init__(self, factor=2, gain=1):
super().__init__()
assert isinstance(factor, int) and factor >= 1
self.gain = gain
self.factor = factor
def forward(self, x):
return upscale2d(x, factor=self.factor, gain=self.gain)
class G_mapping(nn.Sequential):
def __init__(self, nonlinearity='lrelu', use_wscale=True):
act, gain = {'relu': (torch.relu, np.sqrt(2)),
'lrelu': (nn.LeakyReLU(negative_slope=0.2), np.sqrt(2))}[nonlinearity]
layers = [
('pixel_norm', PixelNormLayer()),
('dense0', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense0_act', act),
('dense1', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense1_act', act),
('dense2', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense2_act', act),
('dense3', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense3_act', act),
('dense4', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense4_act', act),
('dense5', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense5_act', act),
('dense6', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense6_act', act),
('dense7', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense7_act', act)
]
super().__init__(OrderedDict(layers))
def forward(self, x):
return super().forward(x)
class Truncation(nn.Module):
def __init__(self, avg_latent, max_layer=8, threshold=0.7):
super().__init__()
self.max_layer = max_layer
self.threshold = threshold
self.register_buffer('avg_latent', avg_latent)
def forward(self, x):
assert x.dim() == 3
interp = torch.lerp(self.avg_latent, x, self.threshold)
do_trunc = (torch.arange(x.size(1)) < self.max_layer).view(1, -1, 1)
return torch.where(do_trunc, interp, x)
class LayerEpilogue(nn.Module):
"""Things to do at the end of each layer."""
def __init__(self, channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer):
super().__init__()
layers = []
if use_noise:
layers.append(('noise', NoiseLayer(channels)))
layers.append(('activation', activation_layer))
if use_pixel_norm:
layers.append(('pixel_norm', PixelNorm()))
if use_instance_norm:
layers.append(('instance_norm', nn.InstanceNorm2d(channels)))
self.top_epi = nn.Sequential(OrderedDict(layers))
if use_styles:
self.style_mod = StyleMod(dlatent_size, channels, use_wscale=use_wscale)
else:
self.style_mod = None
def forward(self, x, dlatents_in_slice=None):
x = self.top_epi(x)
if self.style_mod is not None:
x = self.style_mod(x, dlatents_in_slice)
else:
assert dlatents_in_slice is None
return x
class InputBlock(nn.Module):
def __init__(self, nf, dlatent_size, const_input_layer, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer):
super().__init__()
self.const_input_layer = const_input_layer
self.nf = nf
if self.const_input_layer:
# called 'const' in tf
self.const = nn.Parameter(torch.ones(1, nf, 4, 4))
self.bias = nn.Parameter(torch.ones(nf))
else:
self.dense = MyLinear(dlatent_size, nf*16, gain=gain/4, use_wscale=use_wscale) # tweak gain to match the official implementation of Progressing GAN
self.epi1 = LayerEpilogue(nf, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
self.conv = MyConv2d(nf, nf, 3, gain=gain, use_wscale=use_wscale)
self.epi2 = LayerEpilogue(nf, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
def forward(self, dlatents_in_range):
batch_size = dlatents_in_range.size(0)
if self.const_input_layer:
x = self.const.expand(batch_size, -1, -1, -1)
x = x + self.bias.view(1, -1, 1, 1)
else:
x = self.dense(dlatents_in_range[:, 0]).view(batch_size, self.nf, 4, 4)
x = self.epi1(x, dlatents_in_range[:, 0])
x = self.conv(x)
x = self.epi2(x, dlatents_in_range[:, 1])
return x
class GSynthesisBlock(nn.Module):
def __init__(self, in_channels, out_channels, blur_filter, dlatent_size, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer):
# 2**res x 2**res # res = 3..resolution_log2
super().__init__()
if blur_filter:
blur = BlurLayer(blur_filter)
else:
blur = None
self.conv0_up = MyConv2d(in_channels, out_channels, kernel_size=3, gain=gain, use_wscale=use_wscale,
intermediate=blur, upscale=True)
self.epi1 = LayerEpilogue(out_channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
self.conv1 = MyConv2d(out_channels, out_channels, kernel_size=3, gain=gain, use_wscale=use_wscale)
self.epi2 = LayerEpilogue(out_channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
def forward(self, x, dlatents_in_range):
x = self.conv0_up(x)
x = self.epi1(x, dlatents_in_range[:, 0])
x = self.conv1(x)
x = self.epi2(x, dlatents_in_range[:, 1])
return x
class G_synthesis(nn.Module):
def __init__(self,
dlatent_size = 512, # Disentangled latent (W) dimensionality.
num_channels = 3, # Number of output color channels.
resolution = 1024, # Output resolution.
fmap_base = 8192, # Overall multiplier for the number of feature maps.
fmap_decay = 1.0, # log2 feature map reduction when doubling the resolution.
fmap_max = 512, # Maximum number of feature maps in any layer.
use_styles = True, # Enable style inputs?
const_input_layer = True, # First layer is a learned constant?
use_noise = True, # Enable noise inputs?
randomize_noise = True, # True = randomize noise inputs every time (non-deterministic), False = read noise inputs from variables.
nonlinearity = 'lrelu', # Activation function: 'relu', 'lrelu'
use_wscale = True, # Enable equalized learning rate?
use_pixel_norm = False, # Enable pixelwise feature vector normalization?
use_instance_norm = True, # Enable instance normalization?
dtype = torch.float32, # Data type to use for activations and outputs.
blur_filter = [1,2,1], # Low-pass filter to apply when resampling activations. None = no filtering.
):
super().__init__()
def nf(stage):
return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
self.dlatent_size = dlatent_size
resolution_log2 = int(np.log2(resolution))
assert resolution == 2**resolution_log2 and resolution >= 4
act, gain = {'relu': (torch.relu, np.sqrt(2)),
'lrelu': (nn.LeakyReLU(negative_slope=0.2), np.sqrt(2))}[nonlinearity]
num_layers = resolution_log2 * 2 - 2
num_styles = num_layers if use_styles else 1
torgbs = []
blocks = []
for res in range(2, resolution_log2 + 1):
channels = nf(res-1)
name = '{s}x{s}'.format(s=2**res)
if res == 2:
blocks.append((name,
InputBlock(channels, dlatent_size, const_input_layer, gain, use_wscale,
use_noise, use_pixel_norm, use_instance_norm, use_styles, act)))
else:
blocks.append((name,
GSynthesisBlock(last_channels, channels, blur_filter, dlatent_size, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, act)))
last_channels = channels
self.torgb = MyConv2d(channels, num_channels, 1, gain=1, use_wscale=use_wscale)
self.blocks = nn.ModuleDict(OrderedDict(blocks))
def forward(self, dlatents_in):
# Input: Disentangled latents (W) [minibatch, num_layers, dlatent_size].
# lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0), trainable=False), dtype)
batch_size = dlatents_in.size(0)
for i, m in enumerate(self.blocks.values()):
if i == 0:
x = m(dlatents_in[:, 2*i:2*i+2])
else:
x = m(x, dlatents_in[:, 2*i:2*i+2])
rgb = self.torgb(x)
return rgb
class StyleGAN_G(nn.Sequential):
def __init__(self, resolution, truncation=1.0):
self.resolution = resolution
self.layers = OrderedDict([
('g_mapping', G_mapping()),
#('truncation', Truncation(avg_latent)),
('g_synthesis', G_synthesis(resolution=resolution)),
])
super().__init__(self.layers)
def forward(self, x, latent_is_w=False):
if isinstance(x, list):
assert len(x) == 18, 'Must provide 1 or 18 latents'
if not latent_is_w:
x = [self.layers['g_mapping'].forward(l) for l in x]
x = torch.stack(x, dim=1)
else:
if not latent_is_w:
x = self.layers['g_mapping'].forward(x)
x = x.unsqueeze(1).expand(-1, 18, -1)
x = self.layers['g_synthesis'].forward(x)
return x
# From: https://github.com/lernapparat/lernapparat/releases/download/v2019-02-01/
def load_weights(self, checkpoint):
self.load_state_dict(torch.load(checkpoint))
def export_from_tf(self, pickle_path):
module_path = Path(__file__).parent / 'stylegan_tf'
sys.path.append(str(module_path.resolve()))
import dnnlib, dnnlib.tflib, pickle, torch, collections
dnnlib.tflib.init_tf()
weights = pickle.load(open(pickle_path,'rb'))
weights_pt = [collections.OrderedDict([(k, torch.from_numpy(v.value().eval())) for k,v in w.trainables.items()]) for w in weights]
#torch.save(weights_pt, pytorch_name)
# then on the PyTorch side run
state_G, state_D, state_Gs = weights_pt #torch.load('./karras2019stylegan-ffhq-1024x1024.pt')
def key_translate(k):
k = k.lower().split('/')
if k[0] == 'g_synthesis':
if not k[1].startswith('torgb'):
k.insert(1, 'blocks')
k = '.'.join(k)
k = (k.replace('const.const','const').replace('const.bias','bias').replace('const.stylemod','epi1.style_mod.lin')
.replace('const.noise.weight','epi1.top_epi.noise.weight')
.replace('conv.noise.weight','epi2.top_epi.noise.weight')
.replace('conv.stylemod','epi2.style_mod.lin')
.replace('conv0_up.noise.weight', 'epi1.top_epi.noise.weight')
.replace('conv0_up.stylemod','epi1.style_mod.lin')
.replace('conv1.noise.weight', 'epi2.top_epi.noise.weight')
.replace('conv1.stylemod','epi2.style_mod.lin')
.replace('torgb_lod0','torgb'))
else:
k = '.'.join(k)
return k
def weight_translate(k, w):
k = key_translate(k)
if k.endswith('.weight'):
if w.dim() == 2:
w = w.t()
elif w.dim() == 1:
pass
else:
assert w.dim() == 4
w = w.permute(3, 2, 0, 1)
return w
# we delete the useless torgb filters
param_dict = {key_translate(k) : weight_translate(k, v) for k,v in state_Gs.items() if 'torgb_lod' not in key_translate(k)}
if 1:
sd_shapes = {k : v.shape for k,v in self.state_dict().items()}
param_shapes = {k : v.shape for k,v in param_dict.items() }
for k in list(sd_shapes)+list(param_shapes):
pds = param_shapes.get(k)
sds = sd_shapes.get(k)
if pds is None:
print ("sd only", k, sds)
elif sds is None:
print ("pd only", k, pds)
elif sds != pds:
print ("mismatch!", k, pds, sds)
self.load_state_dict(param_dict, strict=False) # needed for the blur kernels
torch.save(self.state_dict(), Path(pickle_path).with_suffix('.pt')) |