File size: 28,062 Bytes
97069e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
# Copyright 2020 Erik Härkönen. All rights reserved.
# This file is licensed to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy
# of the License at http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.

import torch
import numpy as np
import re
import os
import random
from pathlib import Path
from types import SimpleNamespace
from utils import download_ckpt
from config import Config
from netdissect import proggan, zdataset
from . import biggan
from . import stylegan
from . import stylegan2
from abc import abstractmethod, ABC as AbstractBaseClass
from functools import singledispatch

class BaseModel(AbstractBaseClass, torch.nn.Module):

    # Set parameters for identifying model from instance
    def __init__(self, model_name, class_name):
        super(BaseModel, self).__init__()
        self.model_name = model_name
        self.outclass = class_name

    # Stop model evaluation as soon as possible after
    # given layer has been executed, used to speed up
    # netdissect.InstrumentedModel::retain_layer().
    # Validate with tests/partial_forward_test.py
    # Can use forward() as fallback at the cost of performance.
    @abstractmethod
    def partial_forward(self, x, layer_name):
        pass

    # Generate batch of latent vectors
    @abstractmethod
    def sample_latent(self, n_samples=1, seed=None, truncation=None):
        pass

    # Maximum number of latents that can be provided
    # Typically one for each layer
    def get_max_latents(self):
        return 1

    # Name of primary latent space
    # E.g. StyleGAN can alternatively use W
    def latent_space_name(self):
        return 'Z'

    def get_latent_shape(self):
        return tuple(self.sample_latent(1).shape)

    def get_latent_dims(self):
        return np.prod(self.get_latent_shape())

    def set_output_class(self, new_class):
        self.outclass = new_class

    # Map from typical range [-1, 1] to [0, 1]
    def forward(self, x):
        out = self.model.forward(x)
        return 0.5*(out+1)

    # Generate images and convert to numpy
    def sample_np(self, z=None, n_samples=1, seed=None):
        if z is None:
            z = self.sample_latent(n_samples, seed=seed)
        elif isinstance(z, list):
            z = [torch.tensor(l).to(self.device) if not torch.is_tensor(l) else l for l in z]
        elif not torch.is_tensor(z):
            z = torch.tensor(z).to(self.device)
        img = self.forward(z)
        img_np = img.permute(0, 2, 3, 1).cpu().detach().numpy()
        return np.clip(img_np, 0.0, 1.0).squeeze()

    # For models that use part of latent as conditioning
    def get_conditional_state(self, z):
        return None

    # For models that use part of latent as conditioning
    def set_conditional_state(self, z, c):
        return z

    def named_modules(self, *args, **kwargs):
        return self.model.named_modules(*args, **kwargs)

# PyTorch port of StyleGAN 2
class StyleGAN2(BaseModel):
    def __init__(self, device, class_name, truncation=1.0, use_w=False):
        super(StyleGAN2, self).__init__('StyleGAN2', class_name or 'ffhq')
        self.device = device
        self.truncation = truncation
        self.latent_avg = None
        self.w_primary = use_w # use W as primary latent space?

        # Image widths
        configs = {
            # Converted NVIDIA official
            'ffhq': 1024,
            'car': 512,
            'cat': 256,
            'church': 256,
            'horse': 256,
            # Tuomas
            'bedrooms': 256,
            'kitchen': 256,
            'places': 256,
            'lookbook': 512
        }

        assert self.outclass in configs, \
            f'Invalid StyleGAN2 class {self.outclass}, should be one of [{", ".join(configs.keys())}]'

        self.resolution = configs[self.outclass]
        self.name = f'StyleGAN2-{self.outclass}'
        self.has_latent_residual = True
        self.load_model()
        self.set_noise_seed(0)

    def latent_space_name(self):
        return 'W' if self.w_primary else 'Z'

    def use_w(self):
        self.w_primary = True

    def use_z(self):
        self.w_primary = False

    # URLs created with https://sites.google.com/site/gdocs2direct/
    def download_checkpoint(self, outfile):
        checkpoints = {
            'horse': 'https://drive.google.com/uc?export=download&id=18SkqWAkgt0fIwDEf2pqeaenNi4OoCo-0',
            'ffhq': 'https://drive.google.com/uc?export=download&id=1FJRwzAkV-XWbxgTwxEmEACvuqF5DsBiV',
            'church': 'https://drive.google.com/uc?export=download&id=1HFM694112b_im01JT7wop0faftw9ty5g',
            'car': 'https://drive.google.com/uc?export=download&id=1iRoWclWVbDBAy5iXYZrQnKYSbZUqXI6y',
            'cat': 'https://drive.google.com/uc?export=download&id=15vJP8GDr0FlRYpE8gD7CdeEz2mXrQMgN',
            'places': 'https://drive.google.com/uc?export=download&id=1X8-wIH3aYKjgDZt4KMOtQzN1m4AlCVhm',
            'bedrooms': 'https://drive.google.com/uc?export=download&id=1nZTW7mjazs-qPhkmbsOLLA_6qws-eNQu',
            'kitchen': 'https://drive.google.com/uc?export=download&id=15dCpnZ1YLAnETAPB0FGmXwdBclbwMEkZ',
            'lookbook': 'https://drive.google.com/uc?export=download&id=1-F-RMkbHUv_S_k-_olh43mu5rDUMGYKe'
        }

        url = checkpoints[self.outclass]
        download_ckpt(url, outfile)

    def load_model(self):
        checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints')
        checkpoint = Path(checkpoint_root) / f'stylegan2/stylegan2_{self.outclass}_{self.resolution}.pt'
        
        self.model = stylegan2.Generator(self.resolution, 512, 8).to(self.device)

        if not checkpoint.is_file():
            os.makedirs(checkpoint.parent, exist_ok=True)
            self.download_checkpoint(checkpoint)
        
        ckpt = torch.load(checkpoint)
        self.model.load_state_dict(ckpt['g_ema'], strict=False)
        self.latent_avg = 0

    def sample_latent(self, n_samples=1, seed=None, truncation=None):
        if seed is None:
            seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state

        rng = np.random.RandomState(seed)
        z = torch.from_numpy(
                rng.standard_normal(512 * n_samples)
                .reshape(n_samples, 512)).float().to(self.device) #[N, 512]
        
        if self.w_primary:
            z = self.model.style(z)

        return z

    def get_max_latents(self):
        return self.model.n_latent

    def set_output_class(self, new_class):
        if self.outclass != new_class:
            raise RuntimeError('StyleGAN2: cannot change output class without reloading')
    
    def forward(self, x):
        x = x if isinstance(x, list) else [x]
        out, _ = self.model(x, noise=self.noise,
            truncation=self.truncation, truncation_latent=self.latent_avg, input_is_w=self.w_primary)
        return 0.5*(out+1)

    def partial_forward(self, x, layer_name):
        styles = x if isinstance(x, list) else [x]
        inject_index = None
        noise = self.noise

        if not self.w_primary:
            styles = [self.model.style(s) for s in styles]

        if len(styles) == 1:
            # One global latent
            inject_index = self.model.n_latent
            latent = self.model.strided_style(styles[0].unsqueeze(1).repeat(1, inject_index, 1)) # [N, 18, 512]
        elif len(styles) == 2:
            # Latent mixing with two latents
            if inject_index is None:
                inject_index = random.randint(1, self.model.n_latent - 1)

            latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
            latent2 = styles[1].unsqueeze(1).repeat(1, self.model.n_latent - inject_index, 1)

            latent = self.model.strided_style(torch.cat([latent, latent2], 1))
        else:
            # One latent per layer
            assert len(styles) == self.model.n_latent, f'Expected {self.model.n_latents} latents, got {len(styles)}'
            styles = torch.stack(styles, dim=1) # [N, 18, 512]
            latent = self.model.strided_style(styles)

        if 'style' in layer_name:
            return

        out = self.model.input(latent)
        if 'input' == layer_name:
            return

        out = self.model.conv1(out, latent[:, 0], noise=noise[0])
        if 'conv1' in layer_name:
            return

        skip = self.model.to_rgb1(out, latent[:, 1])
        if 'to_rgb1' in layer_name:
            return

        i = 1
        noise_i = 1

        for conv1, conv2, to_rgb in zip(
            self.model.convs[::2], self.model.convs[1::2], self.model.to_rgbs
        ):
            out = conv1(out, latent[:, i], noise=noise[noise_i])
            if f'convs.{i-1}' in layer_name:
                return

            out = conv2(out, latent[:, i + 1], noise=noise[noise_i + 1])
            if f'convs.{i}' in layer_name:
                return
            
            skip = to_rgb(out, latent[:, i + 2], skip)
            if f'to_rgbs.{i//2}' in layer_name:
                return

            i += 2
            noise_i += 2

        image = skip

        raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward')

    def set_noise_seed(self, seed):
        torch.manual_seed(seed)
        self.noise = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=self.device)]

        for i in range(3, self.model.log_size + 1):
            for _ in range(2):
                self.noise.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=self.device))

# PyTorch port of StyleGAN 1
class StyleGAN(BaseModel):
    def __init__(self, device, class_name, truncation=1.0, use_w=False):
        super(StyleGAN, self).__init__('StyleGAN', class_name or 'ffhq')
        self.device = device
        self.w_primary = use_w # is W primary latent space?

        configs = {
            # Official
            'ffhq': 1024,
            'celebahq': 1024,
            'bedrooms': 256,
            'cars': 512,
            'cats': 256,
            
            # From https://github.com/justinpinkney/awesome-pretrained-stylegan
            'vases': 1024,
            'wikiart': 512,
            'fireworks': 512,
            'abstract': 512,
            'anime': 512,
            'ukiyo-e': 512,
        }

        assert self.outclass in configs, \
            f'Invalid StyleGAN class {self.outclass}, should be one of [{", ".join(configs.keys())}]'

        self.resolution = configs[self.outclass]
        self.name = f'StyleGAN-{self.outclass}'
        self.has_latent_residual = True
        self.load_model()
        self.set_noise_seed(0)

    def latent_space_name(self):
        return 'W' if self.w_primary else 'Z'

    def use_w(self):
        self.w_primary = True

    def use_z(self):
        self.w_primary = False

    def load_model(self):
        checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints')
        checkpoint = Path(checkpoint_root) / f'stylegan/stylegan_{self.outclass}_{self.resolution}.pt'
        
        self.model = stylegan.StyleGAN_G(self.resolution).to(self.device)

        urls_tf = {
            'vases': 'https://thisvesseldoesnotexist.s3-us-west-2.amazonaws.com/public/network-snapshot-008980.pkl',
            'fireworks': 'https://mega.nz/#!7uBHnACY!quIW-pjdDa7NqnZOYh1z5UemWwPOW6HkYSoJ4usCg9U',
            'abstract': 'https://mega.nz/#!vCQyHQZT!zdeOg3VvT4922Z2UfxO51xgAfJD-NAK2nW7H_jMlilU',
            'anime': 'https://mega.nz/#!vawjXISI!F7s13yRicxDA3QYqYDL2kjnc2K7Zk3DwCIYETREmBP4',
            'ukiyo-e': 'https://drive.google.com/uc?id=1CHbJlci9NhVFifNQb3vCGu6zw4eqzvTd',
        }

        urls_torch = {
            'celebahq': 'https://drive.google.com/uc?export=download&id=1lGcRwNoXy_uwXkD6sy43aAa-rMHRR7Ad',
            'bedrooms': 'https://drive.google.com/uc?export=download&id=1r0_s83-XK2dKlyY3WjNYsfZ5-fnH8QgI',
            'ffhq': 'https://drive.google.com/uc?export=download&id=1GcxTcLDPYxQqcQjeHpLUutGzwOlXXcks',
            'cars': 'https://drive.google.com/uc?export=download&id=1aaUXHRHjQ9ww91x4mtPZD0w50fsIkXWt',
            'cats': 'https://drive.google.com/uc?export=download&id=1JzA5iiS3qPrztVofQAjbb0N4xKdjOOyV',
            'wikiart': 'https://drive.google.com/uc?export=download&id=1fN3noa7Rsl9slrDXsgZVDsYFxV0O08Vx',
        }

        if not checkpoint.is_file():
            os.makedirs(checkpoint.parent, exist_ok=True)
            if self.outclass in urls_torch:
                download_ckpt(urls_torch[self.outclass], checkpoint)
            else:
                checkpoint_tf = checkpoint.with_suffix('.pkl')
                if not checkpoint_tf.is_file():
                    download_ckpt(urls_tf[self.outclass], checkpoint_tf)
                print('Converting TensorFlow checkpoint to PyTorch')
                self.model.export_from_tf(checkpoint_tf)
        
        self.model.load_weights(checkpoint)

    def sample_latent(self, n_samples=1, seed=None, truncation=None):
        if seed is None:
            seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state

        rng = np.random.RandomState(seed)
        noise = torch.from_numpy(
                rng.standard_normal(512 * n_samples)
                .reshape(n_samples, 512)).float().to(self.device) #[N, 512]
        
        if self.w_primary:
            noise = self.model._modules['g_mapping'].forward(noise)
        
        return noise

    def get_max_latents(self):
        return 18

    def set_output_class(self, new_class):
        if self.outclass != new_class:
            raise RuntimeError('StyleGAN: cannot change output class without reloading')

    def forward(self, x):
        out = self.model.forward(x, latent_is_w=self.w_primary)
        return 0.5*(out+1)

    # Run model only until given layer
    def partial_forward(self, x, layer_name):
        mapping = self.model._modules['g_mapping']
        G = self.model._modules['g_synthesis']
        trunc = self.model._modules.get('truncation', lambda x : x)

        if not self.w_primary:
            x = mapping.forward(x) # handles list inputs

        if isinstance(x, list):
            x = torch.stack(x, dim=1)
        else:
            x = x.unsqueeze(1).expand(-1, 18, -1)

        # Whole mapping
        if 'g_mapping' in layer_name:
            return

        x = trunc(x)
        if layer_name == 'truncation':
            return

        # Get names of children
        def iterate(m, name, seen):
            children = getattr(m, '_modules', [])
            if len(children) > 0:
                for child_name, module in children.items():
                    seen += iterate(module, f'{name}.{child_name}', seen)
                return seen
            else:
                return [name]

        # Generator
        batch_size = x.size(0)
        for i, (n, m) in enumerate(G.blocks.items()): # InputBlock or GSynthesisBlock
            if i == 0:
                r = m(x[:, 2*i:2*i+2])
            else:
                r = m(r, x[:, 2*i:2*i+2])

            children = iterate(m, f'g_synthesis.blocks.{n}', [])
            for c in children:
                if layer_name in c: # substring
                    return

        raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward')


    def set_noise_seed(self, seed):
        G = self.model._modules['g_synthesis']

        def for_each_child(this, name, func):
            children = getattr(this, '_modules', [])
            for child_name, module in children.items():
                for_each_child(module, f'{name}.{child_name}', func)            
            func(this, name)

        def modify(m, name):
            if isinstance(m, stylegan.NoiseLayer):
                H, W = [int(s) for s in name.split('.')[2].split('x')]
                torch.random.manual_seed(seed)
                m.noise = torch.randn(1, 1, H, W, device=self.device, dtype=torch.float32)
                #m.noise = 1.0 # should be [N, 1, H, W], but this also works

        for_each_child(G, 'g_synthesis', modify)

class GANZooModel(BaseModel):
    def __init__(self, device, model_name):
        super(GANZooModel, self).__init__(model_name, 'default')
        self.device = device
        self.base_model = torch.hub.load('facebookresearch/pytorch_GAN_zoo:hub',
            model_name, pretrained=True, useGPU=(device.type == 'cuda'))
        self.model = self.base_model.netG.to(self.device)
        self.name = model_name
        self.has_latent_residual = False

    def sample_latent(self, n_samples=1, seed=0, truncation=None):
        # Uses torch.randn
        noise, _ = self.base_model.buildNoiseData(n_samples)
        return noise

    # Don't bother for now
    def partial_forward(self, x, layer_name):
        return self.forward(x)

    def get_conditional_state(self, z):
        return z[:, -20:] # last 20 = conditioning

    def set_conditional_state(self, z, c):
        z[:, -20:] = c
        return z
    
    def forward(self, x):
        out = self.base_model.test(x)
        return 0.5*(out+1)


class ProGAN(BaseModel):
    def __init__(self, device, lsun_class=None):
        super(ProGAN, self).__init__('ProGAN', lsun_class)
        self.device = device

        # These are downloaded by GANDissect
        valid_classes = [ 'bedroom', 'churchoutdoor', 'conferenceroom', 'diningroom', 'kitchen', 'livingroom', 'restaurant' ]
        assert self.outclass in valid_classes, \
            f'Invalid LSUN class {self.outclass}, should be one of {valid_classes}'

        self.load_model()
        self.name = f'ProGAN-{self.outclass}'
        self.has_latent_residual = False

    def load_model(self):
        checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints')
        checkpoint = Path(checkpoint_root) / f'progan/{self.outclass}_lsun.pth'
        
        if not checkpoint.is_file():
            os.makedirs(checkpoint.parent, exist_ok=True)
            url = f'http://netdissect.csail.mit.edu/data/ganmodel/karras/{self.outclass}_lsun.pth'
            download_ckpt(url, checkpoint)

        self.model = proggan.from_pth_file(str(checkpoint.resolve())).to(self.device)

    def sample_latent(self, n_samples=1, seed=None, truncation=None):
        if seed is None:
            seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state
        noise = zdataset.z_sample_for_model(self.model, n_samples, seed=seed)[...]
        return noise.to(self.device)

    def forward(self, x):
        if isinstance(x, list):
            assert len(x) == 1, "ProGAN only supports a single global latent"
            x = x[0]
        
        out = self.model.forward(x)
        return 0.5*(out+1)

    # Run model only until given layer
    def partial_forward(self, x, layer_name):
        assert isinstance(self.model, torch.nn.Sequential), 'Expected sequential model'

        if isinstance(x, list):
            assert len(x) == 1, "ProGAN only supports a single global latent"
            x = x[0]

        x = x.view(x.shape[0], x.shape[1], 1, 1)
        for name, module in self.model._modules.items(): # ordered dict
            x = module(x)
            if name == layer_name:
                return

        raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward')


class BigGAN(BaseModel):
    def __init__(self, device, resolution, class_name, truncation=1.0):
        super(BigGAN, self).__init__(f'BigGAN-{resolution}', class_name)
        self.device = device
        self.truncation = truncation
        self.load_model(f'biggan-deep-{resolution}')
        self.set_output_class(class_name or 'husky')
        self.name = f'BigGAN-{resolution}-{self.outclass}-t{self.truncation}'
        self.has_latent_residual = True

    # Default implementaiton fails without an internet
    # connection, even if the model has been cached
    def load_model(self, name):        
        if name not in biggan.model.PRETRAINED_MODEL_ARCHIVE_MAP:
            raise RuntimeError('Unknown BigGAN model name', name)
        
        checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints')
        model_path = Path(checkpoint_root) / name

        os.makedirs(model_path, exist_ok=True)
        
        model_file = model_path / biggan.model.WEIGHTS_NAME
        config_file = model_path / biggan.model.CONFIG_NAME
        model_url = biggan.model.PRETRAINED_MODEL_ARCHIVE_MAP[name]
        config_url = biggan.model.PRETRAINED_CONFIG_ARCHIVE_MAP[name]

        for filename, url in ((model_file, model_url), (config_file, config_url)):
            if not filename.is_file():
                print('Downloading', url)
                with open(filename, 'wb') as f:
                    if url.startswith("s3://"):
                        biggan.s3_get(url, f)
                    else:
                        biggan.http_get(url, f)

        self.model = biggan.BigGAN.from_pretrained(model_path).to(self.device)

    def sample_latent(self, n_samples=1, truncation=None, seed=None):
        if seed is None:
            seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state
        
        noise_vector = biggan.truncated_noise_sample(truncation=truncation or self.truncation, batch_size=n_samples, seed=seed)
        noise = torch.from_numpy(noise_vector) #[N, 128] 
        
        return noise.to(self.device)

    # One extra for gen_z
    def get_max_latents(self):
        return len(self.model.config.layers) + 1

    def get_conditional_state(self, z):
        return self.v_class

    def set_conditional_state(self, z, c):
        self.v_class = c
    
    def is_valid_class(self, class_id):
        if isinstance(class_id, int):
            return class_id < 1000
        elif isinstance(class_id, str):
            return biggan.one_hot_from_names([class_id.replace(' ', '_')]) is not None
        else:
            raise RuntimeError(f'Unknown class identifier {class_id}')

    def set_output_class(self, class_id):
        if isinstance(class_id, int):
            self.v_class = torch.from_numpy(biggan.one_hot_from_int([class_id])).to(self.device)
            self.outclass = f'class{class_id}'
        elif isinstance(class_id, str):
            self.outclass = class_id.replace(' ', '_')
            self.v_class = torch.from_numpy(biggan.one_hot_from_names([class_id])).to(self.device)
        else:
            raise RuntimeError(f'Unknown class identifier {class_id}')
    
    def forward(self, x):        
        # Duplicate along batch dimension
        if isinstance(x, list):
            c = self.v_class.repeat(x[0].shape[0], 1)
            class_vector = len(x)*[c]
        else:
            class_vector = self.v_class.repeat(x.shape[0], 1)
        out = self.model.forward(x, class_vector, self.truncation)  # [N, 3, 128, 128], in [-1, 1]
        return 0.5*(out+1)

    # Run model only until given layer
    # Used to speed up PCA sample collection
    def partial_forward(self, x, layer_name):
        if layer_name in ['embeddings', 'generator.gen_z']:
            n_layers = 0
        elif 'generator.layers' in layer_name:
            layer_base = re.match('^generator\.layers\.[0-9]+', layer_name)[0]
            n_layers = int(layer_base.split('.')[-1]) + 1
        else:
            n_layers = len(self.model.config.layers)

        if not isinstance(x, list):
            x = self.model.n_latents*[x]

        if isinstance(self.v_class, list):
            labels = [c.repeat(x[0].shape[0], 1) for c in class_label]
            embed = [self.model.embeddings(l) for l in labels]
        else:
            class_label = self.v_class.repeat(x[0].shape[0], 1)
            embed = len(x)*[self.model.embeddings(class_label)]
        
        assert len(x) == self.model.n_latents, f'Expected {self.model.n_latents} latents, got {len(x)}'
        assert len(embed) == self.model.n_latents, f'Expected {self.model.n_latents} class vectors, got {len(class_label)}'

        cond_vectors = [torch.cat((z, e), dim=1) for (z, e) in zip(x, embed)]

        # Generator forward
        z = self.model.generator.gen_z(cond_vectors[0])
        z = z.view(-1, 4, 4, 16 * self.model.generator.config.channel_width)
        z = z.permute(0, 3, 1, 2).contiguous()

        cond_idx = 1
        for i, layer in enumerate(self.model.generator.layers[:n_layers]):
            if isinstance(layer, biggan.GenBlock):
                z = layer(z, cond_vectors[cond_idx], self.truncation)
                cond_idx += 1
            else:
                z = layer(z)

        return None

# Version 1: separate parameters
@singledispatch
def get_model(name, output_class, device, **kwargs):
    # Check if optionally provided existing model can be reused
    inst = kwargs.get('inst', None)
    model = kwargs.get('model', None)
    
    if inst or model:
        cached = model or inst.model
        
        network_same = (cached.model_name == name)
        outclass_same = (cached.outclass == output_class)
        can_change_class = ('BigGAN' in name)
        
        if network_same and (outclass_same or can_change_class):
            cached.set_output_class(output_class)
            return cached
    
    if name == 'DCGAN':
        import warnings
        warnings.filterwarnings("ignore", message="nn.functional.tanh is deprecated")
        model = GANZooModel(device, 'DCGAN')
    elif name == 'ProGAN':
        model = ProGAN(device, output_class)
    elif 'BigGAN' in name:
        assert '-' in name, 'Please specify BigGAN resolution, e.g. BigGAN-512'
        model = BigGAN(device, name.split('-')[-1], class_name=output_class)
    elif name == 'StyleGAN':
        model = StyleGAN(device, class_name=output_class)
    elif name == 'StyleGAN2':
        model = StyleGAN2(device, class_name=output_class)
    else:
        raise RuntimeError(f'Unknown model {name}')

    return model

# Version 2: Config object
@get_model.register(Config)
def _(cfg, device, **kwargs):
    kwargs['use_w'] = kwargs.get('use_w', cfg.use_w) # explicit arg can override cfg
    return get_model(cfg.model, cfg.output_class, device, **kwargs)

# Version 1: separate parameters
@singledispatch
def get_instrumented_model(name, output_class, layers, device, **kwargs):
    model = get_model(name, output_class, device, **kwargs)
    model.eval()

    inst = kwargs.get('inst', None)
    if inst:
        inst.close()

    if not isinstance(layers, list):
        layers = [layers]

    # Verify given layer names
    module_names = [name for (name, _) in model.named_modules()]
    for layer_name in layers:
        if not layer_name in module_names:
            print(f"Layer '{layer_name}' not found in model!")
            print("Available layers:", '\n'.join(module_names))
            raise RuntimeError(f"Unknown layer '{layer_name}''")
    
    # Reset StyleGANs to z mode for shape annotation
    if hasattr(model, 'use_z'):
        model.use_z()

    from netdissect.modelconfig import create_instrumented_model
    inst = create_instrumented_model(SimpleNamespace(
        model = model,
        layers = layers,
        cuda = device.type == 'cuda',
        gen = True,
        latent_shape = model.get_latent_shape()
    ))

    if kwargs.get('use_w', False):
        model.use_w()

    return inst

# Version 2: Config object
@get_instrumented_model.register(Config)
def _(cfg, device, **kwargs):
    kwargs['use_w'] = kwargs.get('use_w', cfg.use_w) # explicit arg can override cfg
    return get_instrumented_model(cfg.model, cfg.output_class, cfg.layer, device, **kwargs)