File size: 11,770 Bytes
bef7112 589ea23 bef7112 589ea23 bef7112 bb5cba4 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 e23961d bb5cba4 a8a386d bb5cba4 bef7112 bb5cba4 e23961d bb5cba4 e23961d bb5cba4 e23961d bb5cba4 e23961d 443758a e23961d bb5cba4 e23961d bb5cba4 a8a386d bb5cba4 e23961d bb5cba4 e23961d bb5cba4 e23961d bef7112 e23961d bef7112 bb5cba4 e23961d bb5cba4 e23961d bb5cba4 589ea23 1dc2b15 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 589ea23 bef7112 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import os
import g4f
import requests
import openai
from typing import List, Dict, Optional
from datetime import datetime
from config import Config
from utils.retry_decorator import retry
import logging
import time
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class BaseAIService:
"""Base class for AI services with standardized request handling"""
def __init__(self, config: Dict):
self.config = config
self.session = requests.Session() # Reuse session for all requests
self._cached_models = None
self._cache_time = None
def _make_request(self, method: str, url: str, **kwargs) -> Dict:
"""Standardized request handler with error handling"""
try:
response = self.session.request(method, url, **kwargs)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"API request failed: {str(e)}")
raise
def generate_content(self, model: str, prompt: str) -> str:
raise NotImplementedError
def get_available_models(self) -> List[str]:
raise NotImplementedError
class G4FService(BaseAIService):
"""Service for g4f provider with primary model fallback"""
def __init__(self, config: Dict):
super().__init__(config)
self._available_models = None # Cache for available models
def generate_content(self, model: str, prompt: str) -> str:
"""
Generate content trying the specified model first,
then fall back to others if needed
Args:
model: The preferred model to try first
prompt: The prompt to generate content for
Returns:
Generated content as string
Raises:
Exception: If all model attempts fail
"""
# First try with the requested model
try:
response = g4f.ChatCompletion.create(
model=model,
messages=[{"role": "user", "content": prompt}],
stream=False,
timeout=190
)
if response:
return str(response)
logger.warning(f"Empty response from primary model {model}")
except Exception as e:
logger.warning(f"Primary model {model} failed: {str(e)}")
# If primary model fails, try other available models
fallback_models = [
m for m in self.get_available_models()
if m != model # Exclude already-tried primary model
]
for fallback_model in fallback_models:
try:
response = g4f.ChatCompletion.create(
model=fallback_model,
messages=[{"role": "user", "content": prompt}],
stream=False,
# timeout=30
)
if response:
logger.info(f"Successfully generated with fallback model {fallback_model}")
return str(response)
logger.warning(f"Empty response from fallback model {fallback_model}")
except Exception as e:
logger.warning(f"Fallback model {fallback_model} failed: {str(e)}")
continue
raise Exception(f"Failed to generate content after trying {model} and {len(fallback_models)} fallback models")
def get_available_models(self) -> List[str]:
"""Get available models with caching and priority order"""
if self._available_models is None:
try:
models = sorted(g4f.models._all_models)
# Prioritize certain models
for preferred in ['gpt-4o', 'gpt-4', 'claude-2']:
if preferred in models:
models.remove(preferred)
models.insert(0, preferred)
self._available_models = models
except Exception as e:
logger.error(f"Failed to get G4F models, using defaults: {str(e)}")
self._available_models = ['gpt-4o', 'gpt-4', 'gpt-3.5-turbo', 'llama2-70b', 'claude-2']
return self._available_models.copy()
class G4FServiceAPI(BaseAIService):
"""Service for local G4F API endpoint"""
def __init__(self, config: Dict):
super().__init__(config)
self.base_url = self.config.get('base_url', "http://localhost:1337/v1")
self.default_model = self.config.get('default_model', "gpt-4o-mini")
logger.error(f"G4F API error: {self.base_url}")
def generate_content(self, model: str, prompt: str) -> str:
payload = {
"model": model or self.default_model,
"stream": False,
"messages": [{"role": "user", "content": prompt}]
}
try:
response = self._make_request(
"POST",
f"{self.base_url}/chat/completions",
json=payload
)
choices = response.get('choices', [])
if choices:
return choices[0].get('message', {}).get('content', '[Empty response]')
return '[No response content]'
except Exception as e:
logger.error(f"G4F API error: {str(e)}")
raise
def get_available_models(self) -> List[str]:
try:
response = self._make_request("GET", f"{self.base_url}/models")
return sorted(response.get('data', []))
except Exception as e:
logger.error(f"Failed to get G4F API models: {str(e)}")
return ['gpt-4o-mini', 'gpt-4', 'gpt-3.5-turbo']
class HuggingFaceService(BaseAIService):
"""Service for HuggingFace Inference API"""
def __init__(self, config: Dict):
super().__init__(config)
self.api_key = self.config.get('api_key', os.getenv('HUGGINGFACE_API_KEY'))
self.base_url = self.config.get('api_url', "https://api-inference.huggingface.co/models")
def generate_content(self, model: str, prompt: str) -> str:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": self.config.get('max_tokens', 1000),
"temperature": self.config.get('temperature', 0.7)
}
}
response = self._make_request(
"POST",
f"{self.base_url}/{model}",
headers=headers,
json=payload
)
return response[0]['generated_text']
def get_available_models(self) -> List[str]:
# Maintain your own list or implement pagination for the API
return [
"meta-llama/Llama-2-70b-chat-hf",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"google/gemma-7b-it"
]
class TogetherAIService(BaseAIService):
"""Service for Together AI API"""
def __init__(self, config: Dict):
super().__init__(config)
self.api_key = self.config.get('api_key', os.getenv('TOGETHER_API_KEY'))
self.base_url = self.config.get('api_url', "https://api.together.xyz/v1/completions")
def generate_content(self, model: str, prompt: str) -> str:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"model": model,
"prompt": prompt,
"max_tokens": self.config.get('max_tokens', 1000),
"temperature": self.config.get('temperature', 0.7),
"top_p": self.config.get('top_p', 0.9),
"stop": self.config.get('stop_sequences', ["</s>"])
}
response = self._make_request(
"POST",
self.base_url,
headers=headers,
json=payload
)
return response['choices'][0]['text']
def get_available_models(self) -> List[str]:
return [
"togethercomputer/llama-2-70b-chat",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"togethercomputer/CodeLlama-34b-Instruct"
]
class OpenAIService(BaseAIService):
"""Service for OpenAI API with custom base URL support"""
def __init__(self, config: Dict):
super().__init__(config)
self.api_key = self.config.get('api_key', os.getenv('OPENAI_API_KEY'))
self.base_url = self.config.get('base_url', "https://api.openai.com/v1")
self.client = openai.OpenAI(
api_key=self.api_key,
base_url=self.base_url
)
def generate_content(self, model: str, prompt: str) -> str:
try:
response = self.client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=self.config.get('temperature', 0.7),
max_tokens=self.config.get('max_tokens', 1000),
top_p=self.config.get('top_p', 0.9)
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"OpenAI API error: {str(e)}")
raise
def get_available_models(self) -> List[str]:
if self._should_use_cache():
return self._cached_models
try:
models = self.client.models.list()
self._update_cache([m.id for m in models.data if m.id.startswith('gpt-')])
return self._cached_models
except Exception:
return self._get_fallback_models()
def _should_use_cache(self) -> bool:
return self._cached_models and (datetime.now() - self._cache_time).seconds < 3600
def _update_cache(self, models: List[str]) -> None:
self._cached_models = sorted(models)
self._cache_time = datetime.now()
def _get_fallback_models(self) -> List[str]:
try:
models = sorted(g4f.models._all_models)
if 'gpt-4o' in models:
models.remove('gpt-4o')
models.insert(0, 'gpt-4o')
return models
except Exception:
return ['gpt-4o', 'gpt-4', 'gpt-3.5-turbo']
class ModelProvider:
"""Main provider class that routes requests to the configured service"""
def __init__(self):
self.service = self._initialize_service()
def _initialize_service(self) -> BaseAIService:
provider = Config.AI_PROVIDER.lower()
provider_config = Config.AI_PROVIDER_CONFIG.get(provider, {})
service_map = {
'g4f': G4FService,
'g4f-api': G4FServiceAPI,
'huggingface': HuggingFaceService,
'together': TogetherAIService,
'openai': OpenAIService
}
if provider not in service_map:
raise ValueError(f"Unsupported AI provider: {provider}")
return service_map[provider](provider_config)
@retry()
def generate_content(self, model: str, prompt: str) -> str:
return self.service.generate_content(model, prompt)
def generate_index_content(self, model: str, research_subject: str, manual_chapters: List[str] = None) -> str:
prompt = (f"Generate a detailed index for a research paper about {research_subject} "
f"with chapters: {', '.join(manual_chapters)}" if manual_chapters else
f"Generate a detailed index for a research paper about {research_subject}")
return self.generate_content(model, prompt + ". Use markdown format.")
def get_available_models(self) -> List[str]:
return self.service.get_available_models() |