File size: 11,770 Bytes
bef7112
 
 
589ea23
bef7112
589ea23
bef7112
 
 
bb5cba4
bef7112
 
 
 
589ea23
bef7112
 
589ea23
 
 
 
 
 
 
 
 
 
 
 
 
bef7112
 
 
 
 
 
 
589ea23
bef7112
e23961d
bb5cba4
a8a386d
 
bb5cba4
 
bef7112
bb5cba4
e23961d
 
bb5cba4
 
e23961d
bb5cba4
 
 
 
 
 
e23961d
bb5cba4
e23961d
 
 
 
 
 
443758a
e23961d
 
 
 
 
 
 
 
 
 
 
 
 
 
bb5cba4
 
e23961d
bb5cba4
 
a8a386d
bb5cba4
 
e23961d
bb5cba4
e23961d
bb5cba4
e23961d
 
bef7112
e23961d
bef7112
bb5cba4
e23961d
bb5cba4
 
 
e23961d
 
 
 
 
bb5cba4
 
 
 
 
589ea23
 
 
 
 
 
 
1dc2b15
589ea23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef7112
 
 
 
 
589ea23
bef7112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589ea23
 
 
 
 
 
 
bef7112
 
589ea23
bef7112
 
 
 
 
 
589ea23
bef7112
 
 
 
 
589ea23
bef7112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589ea23
 
 
 
 
 
 
bef7112
 
 
 
 
 
 
 
 
 
 
 
 
 
589ea23
bef7112
 
 
 
 
 
 
 
 
 
 
 
 
589ea23
bef7112
 
 
 
 
 
 
589ea23
 
 
bef7112
 
589ea23
bef7112
589ea23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef7112
 
 
 
 
 
 
 
 
589ea23
 
 
 
 
 
 
 
 
bef7112
589ea23
 
bef7112
 
 
 
 
 
589ea23
 
 
 
bef7112
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import g4f
import requests
import openai
from typing import List, Dict, Optional
from datetime import datetime
from config import Config
from utils.retry_decorator import retry
import logging
import time
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class BaseAIService:
    """Base class for AI services with standardized request handling"""
    def __init__(self, config: Dict):
        self.config = config
        self.session = requests.Session()  # Reuse session for all requests
        self._cached_models = None
        self._cache_time = None

    def _make_request(self, method: str, url: str, **kwargs) -> Dict:
        """Standardized request handler with error handling"""
        try:
            response = self.session.request(method, url, **kwargs)
            response.raise_for_status()
            return response.json()
        except Exception as e:
            logger.error(f"API request failed: {str(e)}")
            raise

    def generate_content(self, model: str, prompt: str) -> str:
        raise NotImplementedError

    def get_available_models(self) -> List[str]:
        raise NotImplementedError


class G4FService(BaseAIService):
    """Service for g4f provider with primary model fallback"""
    
    def __init__(self, config: Dict):
        super().__init__(config)
        self._available_models = None  # Cache for available models

    def generate_content(self, model: str, prompt: str) -> str:
        """
        Generate content trying the specified model first,
        then fall back to others if needed
        
        Args:
            model: The preferred model to try first
            prompt: The prompt to generate content for
            
        Returns:
            Generated content as string
            
        Raises:
            Exception: If all model attempts fail
        """
        # First try with the requested model
        try:
            response = g4f.ChatCompletion.create(
                model=model,
                messages=[{"role": "user", "content": prompt}],
                stream=False,
                timeout=190
            )
            if response:
                return str(response)
            logger.warning(f"Empty response from primary model {model}")
        except Exception as e:
            logger.warning(f"Primary model {model} failed: {str(e)}")

        # If primary model fails, try other available models
        fallback_models = [
            m for m in self.get_available_models() 
            if m != model  # Exclude already-tried primary model
        ]

        for fallback_model in fallback_models:
            try:
                response = g4f.ChatCompletion.create(
                    model=fallback_model,
                    messages=[{"role": "user", "content": prompt}],
                    stream=False,
                    # timeout=30
                )
                if response:
                    logger.info(f"Successfully generated with fallback model {fallback_model}")
                    return str(response)
                logger.warning(f"Empty response from fallback model {fallback_model}")
            except Exception as e:
                logger.warning(f"Fallback model {fallback_model} failed: {str(e)}")
                continue

        raise Exception(f"Failed to generate content after trying {model} and {len(fallback_models)} fallback models")

    def get_available_models(self) -> List[str]:
        """Get available models with caching and priority order"""
        if self._available_models is None:
            try:
                models = sorted(g4f.models._all_models)
                # Prioritize certain models
                for preferred in ['gpt-4o', 'gpt-4', 'claude-2']:
                    if preferred in models:
                        models.remove(preferred)
                        models.insert(0, preferred)
                self._available_models = models
            except Exception as e:
                logger.error(f"Failed to get G4F models, using defaults: {str(e)}")
                self._available_models = ['gpt-4o', 'gpt-4', 'gpt-3.5-turbo', 'llama2-70b', 'claude-2']
        return self._available_models.copy()

class G4FServiceAPI(BaseAIService):
    """Service for local G4F API endpoint"""
    def __init__(self, config: Dict):
        super().__init__(config)
        self.base_url = self.config.get('base_url', "http://localhost:1337/v1")
        self.default_model = self.config.get('default_model', "gpt-4o-mini")
        logger.error(f"G4F API error: {self.base_url}")

    def generate_content(self, model: str, prompt: str) -> str:
        payload = {
            "model": model or self.default_model,
            "stream": False,
            "messages": [{"role": "user", "content": prompt}]
        }

        try:
            response = self._make_request(
                "POST",
                f"{self.base_url}/chat/completions",
                json=payload
            )
            choices = response.get('choices', [])
            if choices:
                return choices[0].get('message', {}).get('content', '[Empty response]')
            return '[No response content]'
        except Exception as e:
            logger.error(f"G4F API error: {str(e)}")
            raise

    def get_available_models(self) -> List[str]:
        try:
            response = self._make_request("GET", f"{self.base_url}/models")
            return sorted(response.get('data', []))
        except Exception as e:
            logger.error(f"Failed to get G4F API models: {str(e)}")
            return ['gpt-4o-mini', 'gpt-4', 'gpt-3.5-turbo']
        
class HuggingFaceService(BaseAIService):
    """Service for HuggingFace Inference API"""
    def __init__(self, config: Dict):
        super().__init__(config)
        self.api_key = self.config.get('api_key', os.getenv('HUGGINGFACE_API_KEY'))
        self.base_url = self.config.get('api_url', "https://api-inference.huggingface.co/models")

    def generate_content(self, model: str, prompt: str) -> str:
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }
        
        payload = {
            "inputs": prompt,
            "parameters": {
                "max_new_tokens": self.config.get('max_tokens', 1000),
                "temperature": self.config.get('temperature', 0.7)
            }
        }

        response = self._make_request(
            "POST",
            f"{self.base_url}/{model}",
            headers=headers,
            json=payload
        )
        return response[0]['generated_text']

    def get_available_models(self) -> List[str]:
        # Maintain your own list or implement pagination for the API
        return [
            "meta-llama/Llama-2-70b-chat-hf",
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "google/gemma-7b-it"
        ]


class TogetherAIService(BaseAIService):
    """Service for Together AI API"""
    def __init__(self, config: Dict):
        super().__init__(config)
        self.api_key = self.config.get('api_key', os.getenv('TOGETHER_API_KEY'))
        self.base_url = self.config.get('api_url', "https://api.together.xyz/v1/completions")

    def generate_content(self, model: str, prompt: str) -> str:
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }
        
        payload = {
            "model": model,
            "prompt": prompt,
            "max_tokens": self.config.get('max_tokens', 1000),
            "temperature": self.config.get('temperature', 0.7),
            "top_p": self.config.get('top_p', 0.9),
            "stop": self.config.get('stop_sequences', ["</s>"])
        }

        response = self._make_request(
            "POST",
            self.base_url,
            headers=headers,
            json=payload
        )
        return response['choices'][0]['text']

    def get_available_models(self) -> List[str]:
        return [
            "togethercomputer/llama-2-70b-chat",
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "togethercomputer/CodeLlama-34b-Instruct"
        ]


class OpenAIService(BaseAIService):
    """Service for OpenAI API with custom base URL support"""
    def __init__(self, config: Dict):
        super().__init__(config)
        self.api_key = self.config.get('api_key', os.getenv('OPENAI_API_KEY'))
        self.base_url = self.config.get('base_url', "https://api.openai.com/v1")
        
        self.client = openai.OpenAI(
            api_key=self.api_key,
            base_url=self.base_url
        )

    def generate_content(self, model: str, prompt: str) -> str:
        try:
            response = self.client.chat.completions.create(
                model=model,
                messages=[{"role": "user", "content": prompt}],
                temperature=self.config.get('temperature', 0.7),
                max_tokens=self.config.get('max_tokens', 1000),
                top_p=self.config.get('top_p', 0.9)
            )
            return response.choices[0].message.content
        except Exception as e:
            logger.error(f"OpenAI API error: {str(e)}")
            raise

    def get_available_models(self) -> List[str]:
        if self._should_use_cache():
            return self._cached_models
            
        try:
            models = self.client.models.list()
            self._update_cache([m.id for m in models.data if m.id.startswith('gpt-')])
            return self._cached_models
        except Exception:
            return self._get_fallback_models()

    def _should_use_cache(self) -> bool:
        return self._cached_models and (datetime.now() - self._cache_time).seconds < 3600

    def _update_cache(self, models: List[str]) -> None:
        self._cached_models = sorted(models)
        self._cache_time = datetime.now()

    def _get_fallback_models(self) -> List[str]:
        try:
            models = sorted(g4f.models._all_models)
            if 'gpt-4o' in models:
                models.remove('gpt-4o')
                models.insert(0, 'gpt-4o')
            return models
        except Exception:
            return ['gpt-4o', 'gpt-4', 'gpt-3.5-turbo']


class ModelProvider:
    """Main provider class that routes requests to the configured service"""
    def __init__(self):
        self.service = self._initialize_service()

    def _initialize_service(self) -> BaseAIService:
        provider = Config.AI_PROVIDER.lower()
        provider_config = Config.AI_PROVIDER_CONFIG.get(provider, {})

        service_map = {
            'g4f': G4FService,
            'g4f-api': G4FServiceAPI,
            'huggingface': HuggingFaceService,
            'together': TogetherAIService,
            'openai': OpenAIService
        }

        if provider not in service_map:
            raise ValueError(f"Unsupported AI provider: {provider}")
        
        return service_map[provider](provider_config)

    @retry()
    def generate_content(self, model: str, prompt: str) -> str:
        return self.service.generate_content(model, prompt)

    def generate_index_content(self, model: str, research_subject: str, manual_chapters: List[str] = None) -> str:
        prompt = (f"Generate a detailed index for a research paper about {research_subject} "
                 f"with chapters: {', '.join(manual_chapters)}" if manual_chapters else
                 f"Generate a detailed index for a research paper about {research_subject}")
        return self.generate_content(model, prompt + ". Use markdown format.")

    def get_available_models(self) -> List[str]:
        return self.service.get_available_models()