File size: 9,015 Bytes
b16f722
 
 
 
48af45f
b16f722
48af45f
b16f722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
from pypdf import PdfReader
from openai import OpenAI

api_key = "251a30544f394891bd37c6b44960b68f"
base_url = "https://api.aimlapi.com/v1"
api = OpenAI(api_key=api_key, base_url=base_url)

# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
    reader = PdfReader(pdf_path)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

# Function to detect sections in the extracted text
def detect_sections(text):
    sections = {"Introduction": "", "Methodology": "", "Results": "", "Conclusion": ""}
    lines = text.split('\n')
    current_section = None

    for line in lines:
        line_lower = line.lower().strip()
        if "introduction" in line_lower:
            current_section = "Introduction"
        elif "methodology" in line_lower or "methods" in line_lower:
            current_section = "Methodology"
        elif "results" in line_lower:
            current_section = "Results"
        elif "conclusion" in line_lower or "discussion" in line_lower:
            current_section = "Conclusion"
        if current_section:
            sections[current_section] += line + "\n"

    return sections

# Function to summarize sections
def summarize_section(section_title, text):
    system_prompt = f"You are an AI assistant. Summarize the {section_title.lower()} of the following research paper section:"
    user_prompt = text[:2000]  # Limit input to the first 2000 characters

    completion = api.chat.completions.create(
        model="mistralai/Mistral-7B-Instruct-v0.2",
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt},
        ],
        temperature=0.3,
        max_tokens=150,
    )

    summary = completion.choices[0].message.content.strip()
    return summary

# Function to propose experiments
def propose_experiments(text):
    system_prompt = "You are an AI assistant. Based on the following research paper, propose 3-5 potential follow-up experiments:"
    user_prompt = text[:3000]  # Limit input to the first 3000 characters

    completion = api.chat.completions.create(
        model="mistralai/Mistral-7B-Instruct-v0.2",
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt},
        ],
        temperature=0.7,
        max_tokens=200,
    )

    proposed_experiments = completion.choices[0].message.content.strip()
    return proposed_experiments

# Function to perform a comparative study
def comparative_study(texts):
    system_prompt = "You are an AI assistant. Compare and contrast the following research papers, highlighting key similarities and differences:"
    user_prompt = "\n\n".join([f"Paper {i+1}:\n{text[:1000]}" for i, text in enumerate(texts)])

    completion = api.chat.completions.create(
        model="mistralai/Mistral-7B-Instruct-v0.2",
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt},
        ],
        temperature=0.5,
        max_tokens=300,
    )

    comparison_results = completion.choices[0].message.content.strip()
    return comparison_results

# Process PDF and summarize sections
def process_and_summarize_pdf(pdf_paths):
    results = {}
    texts = []
    for pdf_path in pdf_paths:
        text = extract_text_from_pdf(pdf_path)
        texts.append(text)
        sections = detect_sections(text)
        summaries = {}
        for section_title, content in sections.items():
            if content.strip():
                summaries[section_title] = summarize_section(section_title, content)
        results[pdf_path] = {
            "summaries": summaries,
            "proposed_experiments": propose_experiments(text)
        }
    results["comparative_study"] = comparative_study(texts)
    return results

def chat_with_paper(pdf_path, user_query, chat_history):
    # Extract the text from the selected PDF
    text = extract_text_from_pdf(pdf_path)

    # Prepare the chat history for the API
    messages = [
        {"role": "system", "content": f"You are an AI assistant. Answer questions based on the following research paper: {pdf_path}."},
    ]
    for human, ai in chat_history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": ai})
    messages.append({"role": "user", "content": user_query})

    completion = api.chat.completions.create(
        model="mistralai/Mistral-7B-Instruct-v0.2",
        messages=messages,
        temperature=0.7,
        max_tokens=256,
    )

    response = completion.choices[0].message.content.strip()
    chat_history.append((user_query, response))
    return chat_history, chat_history
def create_interface():
    with gr.Blocks(css=".center-title {text-align: center;}") as interface:

        # Centered title
        gr.Markdown("<h2 class='center-title'><b>ResearchHive</b> - Research Paper Summarizer and Chat Tool</h2>")

        # Sidebar layout for file upload
        with gr.Row():
            with gr.Column(scale=1):  # Sidebar
                gr.Markdown("### Upload Research Papers")
                file_output = gr.File(label="Upload PDFs", file_count="multiple")
                upload_button = gr.Button("Upload Files")

            with gr.Column(scale=3):  # Main Area
                uploaded_files = gr.State([])
                chat_history = gr.State([])

                with gr.Tabs():
                    with gr.TabItem("Summarize"):
                        papers_to_summarize = gr.CheckboxGroup(label="Select Papers to Summarize", choices=[])
                        summarize_button = gr.Button("Summarize Papers")
                        summarized_sections = gr.Textbox(label="Summarized Sections", lines=10)
                        proposed_experiments = gr.Textbox(label="Proposed Experiments", lines=5)
                        comparative_study_results = gr.Textbox(label="Comparative Study Results", lines=5)

                    with gr.TabItem("Chat"):
                        paper_dropdown_chat = gr.Dropdown(label="Select a Paper to Chat With", choices=[])
                        chatbot = gr.Chatbot()
                        user_query = gr.Textbox(label="Ask a Question about the Research Paper")
                        chat_button = gr.Button("Send")

        # Function to update file list...
        def update_file_list(files, current_files):
            if files is not None:
                current_files.extend(files)
            file_names = [file.name for file in current_files]
            return gr.CheckboxGroup(choices=file_names), gr.Dropdown(choices=file_names), current_files

        upload_button.click(
            fn=update_file_list,
            inputs=[file_output, uploaded_files],
            outputs=[papers_to_summarize, paper_dropdown_chat, uploaded_files]
        )

        # Function to summarize papers...
        def summarize_papers(selected_files, files):
            selected_pdfs = [file for file in files if file.name in selected_files]
            if not selected_pdfs:
                return "Please select at least one valid file.", "", ""

            results = process_and_summarize_pdf([pdf.name for pdf in selected_pdfs])
            summarized_text = ""
            for pdf, result in results.items():
                if pdf != "comparative_study":
                    summarized_text += f"Summaries for {pdf}:\n"
                    for section, summary in result["summaries"].items():
                        summarized_text += f"{section}:\n{summary}\n\n"

            proposed_experiments_text = "\n\n".join(
                [f"{pdf}:\n{result['proposed_experiments']}" for pdf, result in results.items() if pdf != "comparative_study"]
            )
            comparative_study_results = results["comparative_study"]

            return summarized_text, proposed_experiments_text, comparative_study_results

        summarize_button.click(
            fn=summarize_papers,
            inputs=[papers_to_summarize, uploaded_files],
            outputs=[summarized_sections, proposed_experiments, comparative_study_results]
        )

        # Chat function...
        def chat_with_selected_paper(selected_file, query, files, history):
            selected_pdf = next((file for file in files if file.name == selected_file), None)
            if selected_pdf is None:
                return [("Error", "Please select a valid file.")], history
            updated_history, _ = chat_with_paper(selected_pdf.name, query, history)
            return updated_history, updated_history

        chat_button.click(
            fn=chat_with_selected_paper,
            inputs=[paper_dropdown_chat, user_query, uploaded_files, chat_history],
            outputs=[chatbot, chat_history]
        )

    return interface

# Run the Gradio interface
if __name__ == "__main__":
    create_interface().launch()