Spaces:
Sleeping
Sleeping
File size: 9,015 Bytes
b16f722 48af45f b16f722 48af45f b16f722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
from pypdf import PdfReader
from openai import OpenAI
api_key = "251a30544f394891bd37c6b44960b68f"
base_url = "https://api.aimlapi.com/v1"
api = OpenAI(api_key=api_key, base_url=base_url)
# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
reader = PdfReader(pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
# Function to detect sections in the extracted text
def detect_sections(text):
sections = {"Introduction": "", "Methodology": "", "Results": "", "Conclusion": ""}
lines = text.split('\n')
current_section = None
for line in lines:
line_lower = line.lower().strip()
if "introduction" in line_lower:
current_section = "Introduction"
elif "methodology" in line_lower or "methods" in line_lower:
current_section = "Methodology"
elif "results" in line_lower:
current_section = "Results"
elif "conclusion" in line_lower or "discussion" in line_lower:
current_section = "Conclusion"
if current_section:
sections[current_section] += line + "\n"
return sections
# Function to summarize sections
def summarize_section(section_title, text):
system_prompt = f"You are an AI assistant. Summarize the {section_title.lower()} of the following research paper section:"
user_prompt = text[:2000] # Limit input to the first 2000 characters
completion = api.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.2",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
temperature=0.3,
max_tokens=150,
)
summary = completion.choices[0].message.content.strip()
return summary
# Function to propose experiments
def propose_experiments(text):
system_prompt = "You are an AI assistant. Based on the following research paper, propose 3-5 potential follow-up experiments:"
user_prompt = text[:3000] # Limit input to the first 3000 characters
completion = api.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.2",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
temperature=0.7,
max_tokens=200,
)
proposed_experiments = completion.choices[0].message.content.strip()
return proposed_experiments
# Function to perform a comparative study
def comparative_study(texts):
system_prompt = "You are an AI assistant. Compare and contrast the following research papers, highlighting key similarities and differences:"
user_prompt = "\n\n".join([f"Paper {i+1}:\n{text[:1000]}" for i, text in enumerate(texts)])
completion = api.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.2",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
temperature=0.5,
max_tokens=300,
)
comparison_results = completion.choices[0].message.content.strip()
return comparison_results
# Process PDF and summarize sections
def process_and_summarize_pdf(pdf_paths):
results = {}
texts = []
for pdf_path in pdf_paths:
text = extract_text_from_pdf(pdf_path)
texts.append(text)
sections = detect_sections(text)
summaries = {}
for section_title, content in sections.items():
if content.strip():
summaries[section_title] = summarize_section(section_title, content)
results[pdf_path] = {
"summaries": summaries,
"proposed_experiments": propose_experiments(text)
}
results["comparative_study"] = comparative_study(texts)
return results
def chat_with_paper(pdf_path, user_query, chat_history):
# Extract the text from the selected PDF
text = extract_text_from_pdf(pdf_path)
# Prepare the chat history for the API
messages = [
{"role": "system", "content": f"You are an AI assistant. Answer questions based on the following research paper: {pdf_path}."},
]
for human, ai in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": ai})
messages.append({"role": "user", "content": user_query})
completion = api.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.2",
messages=messages,
temperature=0.7,
max_tokens=256,
)
response = completion.choices[0].message.content.strip()
chat_history.append((user_query, response))
return chat_history, chat_history
def create_interface():
with gr.Blocks(css=".center-title {text-align: center;}") as interface:
# Centered title
gr.Markdown("<h2 class='center-title'><b>ResearchHive</b> - Research Paper Summarizer and Chat Tool</h2>")
# Sidebar layout for file upload
with gr.Row():
with gr.Column(scale=1): # Sidebar
gr.Markdown("### Upload Research Papers")
file_output = gr.File(label="Upload PDFs", file_count="multiple")
upload_button = gr.Button("Upload Files")
with gr.Column(scale=3): # Main Area
uploaded_files = gr.State([])
chat_history = gr.State([])
with gr.Tabs():
with gr.TabItem("Summarize"):
papers_to_summarize = gr.CheckboxGroup(label="Select Papers to Summarize", choices=[])
summarize_button = gr.Button("Summarize Papers")
summarized_sections = gr.Textbox(label="Summarized Sections", lines=10)
proposed_experiments = gr.Textbox(label="Proposed Experiments", lines=5)
comparative_study_results = gr.Textbox(label="Comparative Study Results", lines=5)
with gr.TabItem("Chat"):
paper_dropdown_chat = gr.Dropdown(label="Select a Paper to Chat With", choices=[])
chatbot = gr.Chatbot()
user_query = gr.Textbox(label="Ask a Question about the Research Paper")
chat_button = gr.Button("Send")
# Function to update file list...
def update_file_list(files, current_files):
if files is not None:
current_files.extend(files)
file_names = [file.name for file in current_files]
return gr.CheckboxGroup(choices=file_names), gr.Dropdown(choices=file_names), current_files
upload_button.click(
fn=update_file_list,
inputs=[file_output, uploaded_files],
outputs=[papers_to_summarize, paper_dropdown_chat, uploaded_files]
)
# Function to summarize papers...
def summarize_papers(selected_files, files):
selected_pdfs = [file for file in files if file.name in selected_files]
if not selected_pdfs:
return "Please select at least one valid file.", "", ""
results = process_and_summarize_pdf([pdf.name for pdf in selected_pdfs])
summarized_text = ""
for pdf, result in results.items():
if pdf != "comparative_study":
summarized_text += f"Summaries for {pdf}:\n"
for section, summary in result["summaries"].items():
summarized_text += f"{section}:\n{summary}\n\n"
proposed_experiments_text = "\n\n".join(
[f"{pdf}:\n{result['proposed_experiments']}" for pdf, result in results.items() if pdf != "comparative_study"]
)
comparative_study_results = results["comparative_study"]
return summarized_text, proposed_experiments_text, comparative_study_results
summarize_button.click(
fn=summarize_papers,
inputs=[papers_to_summarize, uploaded_files],
outputs=[summarized_sections, proposed_experiments, comparative_study_results]
)
# Chat function...
def chat_with_selected_paper(selected_file, query, files, history):
selected_pdf = next((file for file in files if file.name == selected_file), None)
if selected_pdf is None:
return [("Error", "Please select a valid file.")], history
updated_history, _ = chat_with_paper(selected_pdf.name, query, history)
return updated_history, updated_history
chat_button.click(
fn=chat_with_selected_paper,
inputs=[paper_dropdown_chat, user_query, uploaded_files, chat_history],
outputs=[chatbot, chat_history]
)
return interface
# Run the Gradio interface
if __name__ == "__main__":
create_interface().launch() |