Spaces:
Runtime error
Runtime error
File size: 7,616 Bytes
ef0e8a5 33e6b0a ef0e8a5 7ea18b4 be2b781 7ea18b4 be2b781 33e6b0a ef0e8a5 7ea18b4 ef0e8a5 33e6b0a ef0e8a5 7ea18b4 ef0e8a5 1ef3995 ef0e8a5 33e6b0a ef0e8a5 7ea18b4 ef0e8a5 1ef3995 ef0e8a5 33e6b0a ef0e8a5 7ea18b4 ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 38047c4 33e6b0a ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 dc10896 ef0e8a5 dc10896 ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 d8d13c3 c1599d4 ef0e8a5 c1599d4 ef0e8a5 a7a57ec 33e6b0a ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 752f3e2 ef0e8a5 137df64 25235d7 8f3e0f4 33e6b0a ef0e8a5 131fa44 ef0e8a5 1366471 ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 33e6b0a dc10896 33e6b0a ef0e8a5 33e6b0a dc10896 1366471 dc10896 25235d7 dc10896 d443635 ef0e8a5 dc10896 ef0e8a5 592c899 33e6b0a ef0e8a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import random
import spaces
import gradio as gr
import numpy as np
import torch
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlashFlowMatchEulerDiscreteScheduler
from peft import PeftModel
import os
from huggingface_hub import snapshot_download
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
model_path = snapshot_download(
repo_id="stabilityai/stable-diffusion-3-medium",
revision="refs/pr/26",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="stable-diffusion-3-medium",
token=huggingface_token, # type a new token-id.
)
device = "cuda" if torch.cuda.is_available() else "cpu"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
transformer = SD3Transformer2DModel.from_pretrained(
model_path,
subfolder="transformer",
torch_dtype=torch.float16,
)
transformer = PeftModel.from_pretrained(transformer, "jasperai/flash-sd3")
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = StableDiffusion3Pipeline.from_pretrained(
model_path,
transformer=transformer,
torch_dtype=torch.float16,
text_encoder_3=None,
tokenizer_3=None,
)
pipe = pipe.to(device)
else:
pipe = StableDiffusion3Pipeline.from_pretrained(
model_path,
transformer=transformer,
torch_dtype=torch.float16,
text_encoder_3=None,
tokenizer_3=None,
)
pipe = pipe.to(device)
pipe.scheduler = FlashFlowMatchEulerDiscreteScheduler.from_pretrained(
model_path,
subfolder="scheduler",
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
NUM_INFERENCE_STEPS = 4
@spaces.GPU
def infer(prompt, seed, randomize_seed, guidance_scale, num_inference_steps, negative_prompt, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
negative_prompt=negative_prompt
).images[0]
return image
examples = [
"The image showcases a freshly baked bread, possibly focaccia, with rosemary sprigs and red pepper flakes sprinkled on top. It's sliced and placed on a wire cooling rack, with a bowl of mixed peppercorns beside it.",
'a 3D render of a wizard raccoon holding a sign saying "SD 3" with a magic wand.',
"A panda reading a book in a lush forest.",
"A raccoon trapped inside a glass jar full of colorful candies, the background is steamy with vivid colors",
"Pirate ship sailing on a sea with the milky way galaxy in the sky and purple glow lights",
"a cute cartoon fluffy rabbit pilot walking on a military aircraft carrier, 8k, cinematic",
"A 3d render of a futuristic city with a giant robot in the middle full of neon lights, pink and blue colors",
"A close up of an old elderly man with green eyes looking straight at the camera",
"photo of a huge red cat with green eyes sitting on a cloud in the sky, looking at the camera"
]
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""
# ⚡ Flash Diffusion: FlashSD3 ⚡
This is an interactive demo of [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/), a diffusion distillation method proposed in [Flash Diffusion: Accelerating Any Conditional
Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by Clément Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin* from Jasper Research.
[This model](https://huggingface.co/jasperai/flash-sd3) is a **90.4M** LoRA distilled version of [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium) model that is able to generate 1024x1024 images in **4 to 8 steps**.
Results can be compared with the teacher model [here](https://huggingface.co/spaces/stabilityai/stable-diffusion-3-medium).
Currently running on {power_device}.
"""
)
gr.Markdown(
"If you enjoy the space, please also promote *open-source* by giving a ⭐ to the <a href='https://github.com/gojasper/flash-diffusion' target='_blank'>Github Repo</a>. [![GitHub Stars](https://img.shields.io/github/stars/gojasper/flash-diffusion?style=social)](https://github.com/gojasper/flash-diffusion)"
)
gr.Markdown(
"💡 *Hint:* We noticed that 8 steps and CFG can improve the results (text rendering in particular) for that very model. Feel free to play with those parameters."
)
gr.Markdown(
"💡 *Hint:* To better appreciate the low latency of our method, run the demo locally !"
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW, bad text"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=3.0,
step=0.1,
value=1.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=4,
maximum=8,
step=1,
value=4,
)
examples = gr.Examples(examples=examples, inputs=[prompt], cache_examples=False)
gr.Markdown("**Disclaimer:**")
gr.Markdown(
"This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
)
gr.on(
[run_button.click, seed.change, randomize_seed.change, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps, negative_prompt],
outputs=[result],
# show_progress="minimal",
#show_api=False,
#trigger_mode="always_last",
)
demo.queue().launch(show_api=False)
|