File size: 34,970 Bytes
fc5ed00
 
 
 
 
 
 
 
 
 
 
 
35916c5
 
fc5ed00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35916c5
fc5ed00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35916c5
fc5ed00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35916c5
fc5ed00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
import math
from collections import OrderedDict
from typing import Callable, Iterable, List, Optional, Tuple, Union

import numpy as np
import torch
from torch import Tensor, nn
from torch.nn import functional as F
from torch.nn import init
from torch.nn.parameter import Parameter
from typing_extensions import Final

from df_local.model import ModelParams
from df_local.utils import as_complex, as_real, get_device, get_norm_alpha
from libdf import unit_norm_init


class Conv2dNormAct(nn.Sequential):
    def __init__(
        self,
        in_ch: int,
        out_ch: int,
        kernel_size: Union[int, Iterable[int]],
        fstride: int = 1,
        dilation: int = 1,
        fpad: bool = True,
        bias: bool = True,
        separable: bool = False,
        norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
        activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
    ):
        """Causal Conv2d by delaying the signal for any lookahead.

        Expected input format: [B, C, T, F]
        """
        lookahead = 0  # This needs to be handled on the input feature side
        # Padding on time axis
        kernel_size = (
            (kernel_size, kernel_size) if isinstance(kernel_size, int) else tuple(kernel_size)
        )
        if fpad:
            fpad_ = kernel_size[1] // 2 + dilation - 1
        else:
            fpad_ = 0
        pad = (0, 0, kernel_size[0] - 1 - lookahead, lookahead)
        layers = []
        if any(x > 0 for x in pad):
            layers.append(nn.ConstantPad2d(pad, 0.0))
        groups = math.gcd(in_ch, out_ch) if separable else 1
        if groups == 1:
            separable = False
        if max(kernel_size) == 1:
            separable = False
        layers.append(
            nn.Conv2d(
                in_ch,
                out_ch,
                kernel_size=kernel_size,
                padding=(0, fpad_),
                stride=(1, fstride),  # Stride over time is always 1
                dilation=(1, dilation),  # Same for dilation
                groups=groups,
                bias=bias,
            )
        )
        if separable:
            layers.append(nn.Conv2d(out_ch, out_ch, kernel_size=1, bias=False))
        if norm_layer is not None:
            layers.append(norm_layer(out_ch))
        if activation_layer is not None:
            layers.append(activation_layer())
        super().__init__(*layers)


class ConvTranspose2dNormAct(nn.Sequential):
    def __init__(
        self,
        in_ch: int,
        out_ch: int,
        kernel_size: Union[int, Tuple[int, int]],
        fstride: int = 1,
        dilation: int = 1,
        fpad: bool = True,
        bias: bool = True,
        separable: bool = False,
        norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
        activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
    ):
        """Causal ConvTranspose2d.

        Expected input format: [B, C, T, F]
        """
        # Padding on time axis, with lookahead = 0
        lookahead = 0  # This needs to be handled on the input feature side
        kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
        if fpad:
            fpad_ = kernel_size[1] // 2
        else:
            fpad_ = 0
        pad = (0, 0, kernel_size[0] - 1 - lookahead, lookahead)
        layers = []
        if any(x > 0 for x in pad):
            layers.append(nn.ConstantPad2d(pad, 0.0))
        groups = math.gcd(in_ch, out_ch) if separable else 1
        if groups == 1:
            separable = False
        layers.append(
            nn.ConvTranspose2d(
                in_ch,
                out_ch,
                kernel_size=kernel_size,
                padding=(kernel_size[0] - 1, fpad_ + dilation - 1),
                output_padding=(0, fpad_),
                stride=(1, fstride),  # Stride over time is always 1
                dilation=(1, dilation),
                groups=groups,
                bias=bias,
            )
        )
        if separable:
            layers.append(nn.Conv2d(out_ch, out_ch, kernel_size=1, bias=False))
        if norm_layer is not None:
            layers.append(norm_layer(out_ch))
        if activation_layer is not None:
            layers.append(activation_layer())
        super().__init__(*layers)


def convkxf(
    in_ch: int,
    out_ch: Optional[int] = None,
    k: int = 1,
    f: int = 3,
    fstride: int = 2,
    lookahead: int = 0,
    batch_norm: bool = False,
    act: nn.Module = nn.ReLU(inplace=True),
    mode="normal",  # must be "normal", "transposed" or "upsample"
    depthwise: bool = True,
    complex_in: bool = False,
):
    bias = batch_norm is False
    assert f % 2 == 1
    stride = 1 if f == 1 else (1, fstride)
    if out_ch is None:
        out_ch = in_ch * 2 if mode == "normal" else in_ch // 2
    fpad = (f - 1) // 2
    convpad = (0, fpad)
    modules = []
    # Manually pad for time axis kernel to not introduce delay
    pad = (0, 0, k - 1 - lookahead, lookahead)
    if any(p > 0 for p in pad):
        modules.append(("pad", nn.ConstantPad2d(pad, 0.0)))
    if depthwise:
        groups = min(in_ch, out_ch)
    else:
        groups = 1
    if in_ch % groups != 0 or out_ch % groups != 0:
        groups = 1
    if complex_in and groups % 2 == 0:
        groups //= 2
    convkwargs = {
        "in_channels": in_ch,
        "out_channels": out_ch,
        "kernel_size": (k, f),
        "stride": stride,
        "groups": groups,
        "bias": bias,
    }
    if mode == "normal":
        modules.append(("sconv", nn.Conv2d(padding=convpad, **convkwargs)))
    elif mode == "transposed":
        # Since pytorch's transposed conv padding does not correspond to the actual padding but
        # rather the padding that was used in the encoder conv, we need to set time axis padding
        # according to k. E.g., this disables the padding for k=2:
        #     dilation - (k - 1) - padding
        #   = 1        - (2 - 1) - 1 = 0; => padding = fpad (=1 for k=2)
        padding = (k - 1, fpad)
        modules.append(
            ("sconvt", nn.ConvTranspose2d(padding=padding, output_padding=convpad, **convkwargs))
        )
    elif mode == "upsample":
        modules.append(("upsample", FreqUpsample(fstride)))
        convkwargs["stride"] = 1
        modules.append(("sconv", nn.Conv2d(padding=convpad, **convkwargs)))
    else:
        raise NotImplementedError()
    if groups > 1:
        modules.append(("1x1conv", nn.Conv2d(out_ch, out_ch, 1, bias=False)))
    if batch_norm:
        modules.append(("norm", nn.BatchNorm2d(out_ch)))
    modules.append(("act", act))
    return nn.Sequential(OrderedDict(modules))


class FreqUpsample(nn.Module):
    def __init__(self, factor: int, mode="nearest"):
        super().__init__()
        self.f = float(factor)
        self.mode = mode

    def forward(self, x: Tensor) -> Tensor:
        return F.interpolate(x, scale_factor=[1.0, self.f], mode=self.mode)


def erb_fb(widths: np.ndarray, sr: int, normalized: bool = True, inverse: bool = False) -> Tensor:
    n_freqs = int(np.sum(widths))
    all_freqs = torch.linspace(0, sr // 2, n_freqs + 1)[:-1]

    b_pts = np.cumsum([0] + widths.tolist()).astype(int)[:-1]

    fb = torch.zeros((all_freqs.shape[0], b_pts.shape[0]))
    for i, (b, w) in enumerate(zip(b_pts.tolist(), widths.tolist())):
        fb[b : b + w, i] = 1
    # Normalize to constant energy per resulting band
    if inverse:
        fb = fb.t()
        if not normalized:
            fb /= fb.sum(dim=1, keepdim=True)
    else:
        if normalized:
            fb /= fb.sum(dim=0)
    return fb.to(device=get_device())


class Mask(nn.Module):
    def __init__(self, erb_inv_fb: Tensor, post_filter: bool = False, eps: float = 1e-12):
        super().__init__()
        self.erb_inv_fb: Tensor
        self.register_buffer("erb_inv_fb", erb_inv_fb)
        self.clamp_tensor = torch.__version__ > "1.9.0" or torch.__version__ == "1.9.0"
        self.post_filter = post_filter
        self.eps = eps

    def pf(self, mask: Tensor, beta: float = 0.02) -> Tensor:
        """Post-Filter proposed by Valin et al. [1].

        Args:
            mask (Tensor): Real valued mask, typically of shape [B, C, T, F].
            beta: Global gain factor.
        Refs:
            [1]: Valin et al.: A Perceptually-Motivated Approach for Low-Complexity, Real-Time Enhancement of Fullband Speech.
        """
        mask_sin = mask * torch.sin(np.pi * mask / 2)
        mask_pf = (1 + beta) * mask / (1 + beta * mask.div(mask_sin.clamp_min(self.eps)).pow(2))
        return mask_pf

    def forward(self, spec: Tensor, mask: Tensor, atten_lim: Optional[Tensor] = None) -> Tensor:
        # spec (real) [B, 1, T, F, 2], F: freq_bins
        # mask (real): [B, 1, T, Fe], Fe: erb_bins
        # atten_lim: [B]
        if not self.training and self.post_filter:
            mask = self.pf(mask)
        if atten_lim is not None:
            # dB to amplitude
            atten_lim = 10 ** (-atten_lim / 20)
            # Greater equal (__ge__) not implemented for TorchVersion.
            if self.clamp_tensor:
                # Supported by torch >= 1.9
                mask = mask.clamp(min=atten_lim.view(-1, 1, 1, 1))
            else:
                m_out = []
                for i in range(atten_lim.shape[0]):
                    m_out.append(mask[i].clamp_min(atten_lim[i].item()))
                mask = torch.stack(m_out, dim=0)
        mask = mask.matmul(self.erb_inv_fb)  # [B, 1, T, F]
        return spec * mask.unsqueeze(4)


class ExponentialUnitNorm(nn.Module):
    """Unit norm for a complex spectrogram.

    This should match the rust code:
    ```rust
        for (x, s) in xs.iter_mut().zip(state.iter_mut()) {
            *s = x.norm() * (1. - alpha) + *s * alpha;
            *x /= s.sqrt();
        }
    ```
    """

    alpha: Final[float]
    eps: Final[float]

    def __init__(self, alpha: float, num_freq_bins: int, eps: float = 1e-14):
        super().__init__()
        self.alpha = alpha
        self.eps = eps
        self.init_state: Tensor
        s = torch.from_numpy(unit_norm_init(num_freq_bins)).view(1, 1, num_freq_bins, 1)
        self.register_buffer("init_state", s)

    def forward(self, x: Tensor) -> Tensor:
        # x: [B, C, T, F, 2]
        b, c, t, f, _ = x.shape
        x_abs = x.square().sum(dim=-1, keepdim=True).clamp_min(self.eps).sqrt()
        state = self.init_state.clone().expand(b, c, f, 1)
        out_states: List[Tensor] = []
        for t in range(t):
            state = x_abs[:, :, t] * (1 - self.alpha) + state * self.alpha
            out_states.append(state)
        return x / torch.stack(out_states, 2).sqrt()


class DfOp(nn.Module):
    df_order: Final[int]
    df_bins: Final[int]
    df_lookahead: Final[int]
    freq_bins: Final[int]

    def __init__(
        self,
        df_bins: int,
        df_order: int = 5,
        df_lookahead: int = 0,
        method: str = "complex_strided",
        freq_bins: int = 0,
    ):
        super().__init__()
        self.df_order = df_order
        self.df_bins = df_bins
        self.df_lookahead = df_lookahead
        self.freq_bins = freq_bins
        self.set_forward(method)

    def set_forward(self, method: str):
        # All forward methods should be mathematically similar.
        # DeepFilterNet results are obtained with 'real_unfold'.
        forward_methods = {
            "real_loop": self.forward_real_loop,
            "real_strided": self.forward_real_strided,
            "real_unfold": self.forward_real_unfold,
            "complex_strided": self.forward_complex_strided,
            "real_one_step": self.forward_real_no_pad_one_step,
            "real_hidden_state_loop": self.forward_real_hidden_state_loop,
        }
        if method not in forward_methods.keys():
            raise NotImplementedError(f"`method` must be one of {forward_methods.keys()}")
        if method == "real_hidden_state_loop":
            assert self.freq_bins >= self.df_bins
            self.spec_buf: Tensor
            # Currently only designed for batch size of 1
            self.register_buffer(
                "spec_buf", torch.zeros(1, 1, self.df_order, self.freq_bins, 2), persistent=False
            )
        self.forward = forward_methods[method]

    def forward_real_loop(
        self, spec: Tensor, coefs: Tensor, alpha: Optional[Tensor] = None
    ) -> Tensor:
        # Version 0: Manual loop over df_order, maybe best for onnx export?
        b, _, t, _, _ = spec.shape
        f = self.df_bins
        padded = spec_pad(
            spec[..., : self.df_bins, :].squeeze(1), self.df_order, self.df_lookahead, dim=-3
        )

        spec_f = torch.zeros((b, t, f, 2), device=spec.device)
        for i in range(self.df_order):
            spec_f[..., 0] += padded[:, i : i + t, ..., 0] * coefs[:, :, i, :, 0]
            spec_f[..., 0] -= padded[:, i : i + t, ..., 1] * coefs[:, :, i, :, 1]
            spec_f[..., 1] += padded[:, i : i + t, ..., 1] * coefs[:, :, i, :, 0]
            spec_f[..., 1] += padded[:, i : i + t, ..., 0] * coefs[:, :, i, :, 1]
        return assign_df(spec, spec_f.unsqueeze(1), self.df_bins, alpha)

    def forward_real_strided(
        self, spec: Tensor, coefs: Tensor, alpha: Optional[Tensor] = None
    ) -> Tensor:
        # Version1: Use as_strided instead of unfold
        # spec (real) [B, 1, T, F, 2], O: df_order
        # coefs (real) [B, T, O, F, 2]
        # alpha (real) [B, T, 1]
        padded = as_strided(
            spec[..., : self.df_bins, :].squeeze(1), self.df_order, self.df_lookahead, dim=-3
        )
        # Complex numbers are not supported by onnx
        re = padded[..., 0] * coefs[..., 0]
        re -= padded[..., 1] * coefs[..., 1]
        im = padded[..., 1] * coefs[..., 0]
        im += padded[..., 0] * coefs[..., 1]
        spec_f = torch.stack((re, im), -1).sum(2)
        return assign_df(spec, spec_f.unsqueeze(1), self.df_bins, alpha)

    def forward_real_unfold(
        self, spec: Tensor, coefs: Tensor, alpha: Optional[Tensor] = None
    ) -> Tensor:
        # Version2: Unfold
        # spec (real) [B, 1, T, F, 2], O: df_order
        # coefs (real) [B, T, O, F, 2]
        # alpha (real) [B, T, 1]
        padded = spec_pad(
            spec[..., : self.df_bins, :].squeeze(1), self.df_order, self.df_lookahead, dim=-3
        )
        padded = padded.unfold(dimension=1, size=self.df_order, step=1)  # [B, T, F, 2, O]
        padded = padded.permute(0, 1, 4, 2, 3)
        spec_f = torch.empty_like(padded)
        spec_f[..., 0] = padded[..., 0] * coefs[..., 0]  # re1
        spec_f[..., 0] -= padded[..., 1] * coefs[..., 1]  # re2
        spec_f[..., 1] = padded[..., 1] * coefs[..., 0]  # im1
        spec_f[..., 1] += padded[..., 0] * coefs[..., 1]  # im2
        spec_f = spec_f.sum(dim=2)
        return assign_df(spec, spec_f.unsqueeze(1), self.df_bins, alpha)

    def forward_complex_strided(
        self, spec: Tensor, coefs: Tensor, alpha: Optional[Tensor] = None
    ) -> Tensor:
        # Version3: Complex strided; definatly nicest, no permute, no indexing, but complex gradient
        # spec (real) [B, 1, T, F, 2], O: df_order
        # coefs (real) [B, T, O, F, 2]
        # alpha (real) [B, T, 1]
        padded = as_strided(
            spec[..., : self.df_bins, :].squeeze(1), self.df_order, self.df_lookahead, dim=-3
        )
        spec_f = torch.sum(torch.view_as_complex(padded) * torch.view_as_complex(coefs), dim=2)
        spec_f = torch.view_as_real(spec_f)
        return assign_df(spec, spec_f.unsqueeze(1), self.df_bins, alpha)

    def forward_real_no_pad_one_step(
        self, spec: Tensor, coefs: Tensor, alpha: Optional[Tensor] = None
    ) -> Tensor:
        # Version4: Only viable for onnx handling. `spec` needs external (ring-)buffer handling.
        # Thus, time steps `t` must be equal to `df_order`.

        # spec (real) [B, 1, O, F', 2]
        # coefs (real) [B, 1, O, F, 2]
        assert (
            spec.shape[2] == self.df_order
        ), "This forward method needs spectrogram buffer with `df_order` time steps as input"
        assert coefs.shape[1] == 1, "This forward method is only valid for 1 time step"
        sre, sim = spec[..., : self.df_bins, :].split(1, -1)
        cre, cim = coefs.split(1, -1)
        outr = torch.sum(sre * cre - sim * cim, dim=2).squeeze(-1)
        outi = torch.sum(sre * cim + sim * cre, dim=2).squeeze(-1)
        spec_f = torch.stack((outr, outi), dim=-1)
        return assign_df(
            spec[:, :, self.df_order - self.df_lookahead - 1],
            spec_f.unsqueeze(1),
            self.df_bins,
            alpha,
        )

    def forward_real_hidden_state_loop(self, spec: Tensor, coefs: Tensor, alpha: Tensor) -> Tensor:
        # Version5: Designed for onnx export. `spec` buffer handling is done via a torch buffer.

        # spec (real) [B, 1, T, F', 2]
        # coefs (real) [B, T, O, F, 2]
        b, _, t, _, _ = spec.shape
        spec_out = torch.empty((b, 1, t, self.freq_bins, 2), device=spec.device)
        for t in range(spec.shape[2]):
            self.spec_buf = self.spec_buf.roll(-1, dims=2)
            self.spec_buf[:, :, -1] = spec[:, :, t]
            sre, sim = self.spec_buf[..., : self.df_bins, :].split(1, -1)
            cre, cim = coefs[:, t : t + 1].split(1, -1)
            outr = torch.sum(sre * cre - sim * cim, dim=2).squeeze(-1)
            outi = torch.sum(sre * cim + sim * cre, dim=2).squeeze(-1)
            spec_f = torch.stack((outr, outi), dim=-1)
            spec_out[:, :, t] = assign_df(
                self.spec_buf[:, :, self.df_order - self.df_lookahead - 1].unsqueeze(2),
                spec_f.unsqueeze(1),
                self.df_bins,
                alpha[:, t],
            ).squeeze(2)
        return spec_out


def assign_df(spec: Tensor, spec_f: Tensor, df_bins: int, alpha: Optional[Tensor]):
    spec_out = spec.clone()
    if alpha is not None:
        b = spec.shape[0]
        alpha = alpha.view(b, 1, -1, 1, 1)
        spec_out[..., :df_bins, :] = spec_f * alpha + spec[..., :df_bins, :] * (1 - alpha)
    else:
        spec_out[..., :df_bins, :] = spec_f
    return spec_out


def spec_pad(x: Tensor, window_size: int, lookahead: int, dim: int = 0) -> Tensor:
    pad = [0] * x.dim() * 2
    if dim >= 0:
        pad[(x.dim() - dim - 1) * 2] = window_size - lookahead - 1
        pad[(x.dim() - dim - 1) * 2 + 1] = lookahead
    else:
        pad[(-dim - 1) * 2] = window_size - lookahead - 1
        pad[(-dim - 1) * 2 + 1] = lookahead
    return F.pad(x, pad)


def as_strided(x: Tensor, window_size: int, lookahead: int, step: int = 1, dim: int = 0) -> Tensor:
    shape = list(x.shape)
    shape.insert(dim + 1, window_size)
    x = spec_pad(x, window_size, lookahead, dim=dim)
    # torch.fx workaround
    step = 1
    stride = [x.stride(0), x.stride(1), x.stride(2), x.stride(3)]
    stride.insert(dim, stride[dim] * step)
    return torch.as_strided(x, shape, stride)


class GroupedGRULayer(nn.Module):
    input_size: Final[int]
    hidden_size: Final[int]
    out_size: Final[int]
    bidirectional: Final[bool]
    num_directions: Final[int]
    groups: Final[int]
    batch_first: Final[bool]

    def __init__(
        self,
        input_size: int,
        hidden_size: int,
        groups: int,
        batch_first: bool = True,
        bias: bool = True,
        dropout: float = 0,
        bidirectional: bool = False,
    ):
        super().__init__()
        assert input_size % groups == 0
        assert hidden_size % groups == 0
        kwargs = {
            "bias": bias,
            "batch_first": batch_first,
            "dropout": dropout,
            "bidirectional": bidirectional,
        }
        self.input_size = input_size // groups
        self.hidden_size = hidden_size // groups
        self.out_size = hidden_size
        self.bidirectional = bidirectional
        self.num_directions = 2 if bidirectional else 1
        self.groups = groups
        self.batch_first = batch_first
        assert (self.hidden_size % groups) == 0, "Hidden size must be divisible by groups"
        self.layers = nn.ModuleList(
            (nn.GRU(self.input_size, self.hidden_size, **kwargs) for _ in range(groups))
        )

    def flatten_parameters(self):
        for layer in self.layers:
            layer.flatten_parameters()

    def get_h0(self, batch_size: int = 1, device: torch.device = torch.device("cpu")):
        return torch.zeros(
            self.groups * self.num_directions,
            batch_size,
            self.hidden_size,
            device=device,
        )

    def forward(self, input: Tensor, h0: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
        # input shape: [B, T, I] if batch_first else [T, B, I], B: batch_size, I: input_size
        # state shape: [G*D, B, H], where G: groups, D: num_directions, H: hidden_size

        if h0 is None:
            dim0, dim1 = input.shape[:2]
            bs = dim0 if self.batch_first else dim1
            h0 = self.get_h0(bs, device=input.device)
        outputs: List[Tensor] = []
        outstates: List[Tensor] = []
        for i, layer in enumerate(self.layers):
            o, s = layer(
                input[..., i * self.input_size : (i + 1) * self.input_size],
                h0[i * self.num_directions : (i + 1) * self.num_directions].detach(),
            )
            outputs.append(o)
            outstates.append(s)
        output = torch.cat(outputs, dim=-1)
        h = torch.cat(outstates, dim=0)
        return output, h


class GroupedGRU(nn.Module):
    groups: Final[int]
    num_layers: Final[int]
    batch_first: Final[bool]
    hidden_size: Final[int]
    bidirectional: Final[bool]
    num_directions: Final[int]
    shuffle: Final[bool]
    add_outputs: Final[bool]

    def __init__(
        self,
        input_size: int,
        hidden_size: int,
        num_layers: int = 1,
        groups: int = 4,
        bias: bool = True,
        batch_first: bool = True,
        dropout: float = 0,
        bidirectional: bool = False,
        shuffle: bool = True,
        add_outputs: bool = False,
    ):
        super().__init__()
        kwargs = {
            "groups": groups,
            "bias": bias,
            "batch_first": batch_first,
            "dropout": dropout,
            "bidirectional": bidirectional,
        }
        assert input_size % groups == 0
        assert hidden_size % groups == 0
        assert num_layers > 0
        self.input_size = input_size
        self.groups = groups
        self.num_layers = num_layers
        self.batch_first = batch_first
        self.hidden_size = hidden_size // groups
        self.bidirectional = bidirectional
        self.num_directions = 2 if bidirectional else 1
        if groups == 1:
            shuffle = False  # Fully connected, no need to shuffle
        self.shuffle = shuffle
        self.add_outputs = add_outputs
        self.grus: List[GroupedGRULayer] = nn.ModuleList()  # type: ignore
        self.grus.append(GroupedGRULayer(input_size, hidden_size, **kwargs))
        for _ in range(1, num_layers):
            self.grus.append(GroupedGRULayer(hidden_size, hidden_size, **kwargs))
        self.flatten_parameters()

    def flatten_parameters(self):
        for gru in self.grus:
            gru.flatten_parameters()

    def get_h0(self, batch_size: int, device: torch.device = torch.device("cpu")) -> Tensor:
        return torch.zeros(
            (self.num_layers * self.groups * self.num_directions, batch_size, self.hidden_size),
            device=device,
        )

    def forward(self, input: Tensor, state: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
        dim0, dim1, _ = input.shape
        b = dim0 if self.batch_first else dim1
        if state is None:
            state = self.get_h0(b, input.device)
        output = torch.zeros(
            dim0, dim1, self.hidden_size * self.num_directions * self.groups, device=input.device
        )
        outstates = []
        h = self.groups * self.num_directions
        for i, gru in enumerate(self.grus):
            input, s = gru(input, state[i * h : (i + 1) * h])
            outstates.append(s)
            if self.shuffle and i < self.num_layers - 1:
                input = (
                    input.view(dim0, dim1, -1, self.groups).transpose(2, 3).reshape(dim0, dim1, -1)
                )
            if self.add_outputs:
                output += input
            else:
                output = input
        outstate = torch.cat(outstates, dim=0)
        return output, outstate


class SqueezedGRU(nn.Module):
    input_size: Final[int]
    hidden_size: Final[int]

    def __init__(
        self,
        input_size: int,
        hidden_size: int,
        output_size: Optional[int] = None,
        num_layers: int = 1,
        linear_groups: int = 8,
        batch_first: bool = True,
        gru_skip_op: Optional[Callable[..., torch.nn.Module]] = None,
        linear_act_layer: Callable[..., torch.nn.Module] = nn.Identity,
    ):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.linear_in = nn.Sequential(
            GroupedLinearEinsum(input_size, hidden_size, linear_groups), linear_act_layer()
        )
        self.gru = nn.GRU(hidden_size, hidden_size, num_layers=num_layers, batch_first=batch_first)
        self.gru_skip = gru_skip_op() if gru_skip_op is not None else None
        if output_size is not None:
            self.linear_out = nn.Sequential(
                GroupedLinearEinsum(hidden_size, output_size, linear_groups), linear_act_layer()
            )
        else:
            self.linear_out = nn.Identity()

    def forward(self, input: Tensor, h=None) -> Tuple[Tensor, Tensor]:
        input = self.linear_in(input)
        x, h = self.gru(input, h)
        if self.gru_skip is not None:
            x = x + self.gru_skip(input)
        x = self.linear_out(x)
        return x, h


class GroupedLinearEinsum(nn.Module):
    input_size: Final[int]
    hidden_size: Final[int]
    groups: Final[int]

    def __init__(self, input_size: int, hidden_size: int, groups: int = 1):
        super().__init__()
        # self.weight: Tensor
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.groups = groups
        assert input_size % groups == 0
        self.ws = input_size // groups
        self.register_parameter(
            "weight",
            Parameter(
                torch.zeros(groups, input_size // groups, hidden_size // groups), requires_grad=True
            ),
        )
        self.reset_parameters()

    def reset_parameters(self):
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))  # type: ignore

    def forward(self, x: Tensor) -> Tensor:
        # x: [..., I]
        x = x.unflatten(-1, (self.groups, self.ws))  # [..., G, I/G]
        x = torch.einsum("...gi,...gih->...gh", x, self.weight)  # [..., G, H/G]
        x = x.flatten(2, 3)  # [B, T, H]
        return x


class GroupedLinear(nn.Module):
    input_size: Final[int]
    hidden_size: Final[int]
    groups: Final[int]
    shuffle: Final[bool]

    def __init__(self, input_size: int, hidden_size: int, groups: int = 1, shuffle: bool = True):
        super().__init__()
        assert input_size % groups == 0
        assert hidden_size % groups == 0
        self.groups = groups
        self.input_size = input_size // groups
        self.hidden_size = hidden_size // groups
        if groups == 1:
            shuffle = False
        self.shuffle = shuffle
        self.layers = nn.ModuleList(
            nn.Linear(self.input_size, self.hidden_size) for _ in range(groups)
        )

    def forward(self, x: Tensor) -> Tensor:
        outputs: List[Tensor] = []
        for i, layer in enumerate(self.layers):
            outputs.append(layer(x[..., i * self.input_size : (i + 1) * self.input_size]))
        output = torch.cat(outputs, dim=-1)
        if self.shuffle:
            orig_shape = output.shape
            output = (
                output.view(-1, self.hidden_size, self.groups).transpose(-1, -2).reshape(orig_shape)
            )
        return output


class LocalSnrTarget(nn.Module):
    def __init__(
        self, ws: int = 20, db: bool = True, ws_ns: Optional[int] = None, target_snr_range=None
    ):
        super().__init__()
        self.ws = self.calc_ws(ws)
        self.ws_ns = self.ws * 2 if ws_ns is None else self.calc_ws(ws_ns)
        self.db = db
        self.range = target_snr_range

    def calc_ws(self, ws_ms: int) -> int:
        # Calculates windows size in stft domain given a window size in ms
        p = ModelParams()
        ws = ws_ms - p.fft_size / p.sr * 1000  # length ms of an fft_window
        ws = 1 + ws / (p.hop_size / p.sr * 1000)  # consider hop_size
        return max(int(round(ws)), 1)

    def forward(self, clean: Tensor, noise: Tensor, max_bin: Optional[int] = None) -> Tensor:
        # clean: [B, 1, T, F]
        # out: [B, T']
        if max_bin is not None:
            clean = as_complex(clean[..., :max_bin])
            noise = as_complex(noise[..., :max_bin])
        return (
            local_snr(clean, noise, window_size=self.ws, db=self.db, window_size_ns=self.ws_ns)[0]
            .clamp(self.range[0], self.range[1])
            .squeeze(1)
        )


def _local_energy(x: Tensor, ws: int, device: torch.device) -> Tensor:
    if (ws % 2) == 0:
        ws += 1
    ws_half = ws // 2
    x = F.pad(x.pow(2).sum(-1).sum(-1), (ws_half, ws_half, 0, 0))
    w = torch.hann_window(ws, device=device, dtype=x.dtype)
    x = x.unfold(-1, size=ws, step=1) * w
    return torch.sum(x, dim=-1).div(ws)


def local_snr(
    clean: Tensor,
    noise: Tensor,
    window_size: int,
    db: bool = False,
    window_size_ns: Optional[int] = None,
    eps: float = 1e-12,
) -> Tuple[Tensor, Tensor, Tensor]:
    # clean shape: [B, C, T, F]
    clean = as_real(clean)
    noise = as_real(noise)
    assert clean.dim() == 5

    E_speech = _local_energy(clean, window_size, clean.device)
    window_size_ns = window_size if window_size_ns is None else window_size_ns
    E_noise = _local_energy(noise, window_size_ns, clean.device)

    snr = E_speech / E_noise.clamp_min(eps)
    if db:
        snr = snr.clamp_min(eps).log10().mul(10)
    return snr, E_speech, E_noise


def test_grouped_gru():
    from icecream import ic

    g = 2  # groups
    h = 4  # hidden_size
    i = 2  # input_size
    b = 1  # batch_size
    t = 5  # time_steps
    m = GroupedGRULayer(i, h, g, batch_first=True)
    ic(m)
    input = torch.randn((b, t, i))
    h0 = m.get_h0(b)
    assert list(h0.shape) == [g, b, h // g]
    out, hout = m(input, h0)

    # Should be exportable as raw nn.Module
    torch.onnx.export(
        m, (input, h0), "out/grouped.onnx", example_outputs=(out, hout), opset_version=13
    )
    # Should be exportable as traced
    m = torch.jit.trace(m, (input, h0))
    torch.onnx.export(
        m, (input, h0), "out/grouped.onnx", example_outputs=(out, hout), opset_version=13
    )
    # and as scripted module
    m = torch.jit.script(m)
    torch.onnx.export(
        m, (input, h0), "out/grouped.onnx", example_outputs=(out, hout), opset_version=13
    )

    # now grouped gru
    num = 2
    m = GroupedGRU(i, h, num, g, batch_first=True, shuffle=True)
    ic(m)
    h0 = m.get_h0(b)
    assert list(h0.shape) == [num * g, b, h // g]
    out, hout = m(input, h0)

    # Should be exportable as traced
    m = torch.jit.trace(m, (input, h0))
    torch.onnx.export(
        m, (input, h0), "out/grouped.onnx", example_outputs=(out, hout), opset_version=13
    )
    # and scripted module
    m = torch.jit.script(m)
    torch.onnx.export(
        m, (input, h0), "out/grouped.onnx", example_outputs=(out, hout), opset_version=13
    )


def test_erb():
    import libdf
    from df_local.config import config

    config.use_defaults()
    p = ModelParams()
    n_freq = p.fft_size // 2 + 1
    df_state = libdf.DF(sr=p.sr, fft_size=p.fft_size, hop_size=p.hop_size, nb_bands=p.nb_erb)
    erb = erb_fb(df_state.erb_widths(), p.sr)
    erb_inverse = erb_fb(df_state.erb_widths(), p.sr, inverse=True)
    input = torch.randn((1, 1, 1, n_freq), dtype=torch.complex64)
    input_abs = input.abs().square()
    erb_widths = df_state.erb_widths()
    df_erb = torch.from_numpy(libdf.erb(input.numpy(), erb_widths, False))
    py_erb = torch.matmul(input_abs, erb)
    assert torch.allclose(df_erb, py_erb)
    df_out = torch.from_numpy(libdf.erb_inv(df_erb.numpy(), erb_widths))
    py_out = torch.matmul(py_erb, erb_inverse)
    assert torch.allclose(df_out, py_out)


def test_unit_norm():
    from df_local.config import config
    from libdf import unit_norm

    config.use_defaults()
    p = ModelParams()
    b = 2
    F = p.nb_df
    t = 100
    spec = torch.randn(b, 1, t, F, 2)
    alpha = get_norm_alpha(log=False)
    # Expects complex input of shape [C, T, F]
    norm_lib = torch.as_tensor(unit_norm(torch.view_as_complex(spec).squeeze(1).numpy(), alpha))
    m = ExponentialUnitNorm(alpha, F)
    norm_torch = torch.view_as_complex(m(spec).squeeze(1))
    assert torch.allclose(norm_lib.real, norm_torch.real)
    assert torch.allclose(norm_lib.imag, norm_torch.imag)
    assert torch.allclose(norm_lib.abs(), norm_torch.abs())


def test_dfop():
    from df_local.config import config

    config.use_defaults()
    p = ModelParams()
    f = p.nb_df
    F = f * 2
    o = p.df_order
    d = p.df_lookahead
    t = 100
    spec = torch.randn(1, 1, t, F, 2)
    coefs = torch.randn(1, t, o, f, 2)
    alpha = torch.randn(1, t, 1)
    dfop = DfOp(df_bins=p.nb_df)
    dfop.set_forward("real_loop")
    out1 = dfop(spec, coefs, alpha)
    dfop.set_forward("real_strided")
    out2 = dfop(spec, coefs, alpha)
    dfop.set_forward("real_unfold")
    out3 = dfop(spec, coefs, alpha)
    dfop.set_forward("complex_strided")
    out4 = dfop(spec, coefs, alpha)
    torch.testing.assert_allclose(out1, out2)
    torch.testing.assert_allclose(out1, out3)
    torch.testing.assert_allclose(out1, out4)
    # This forward method requires external padding/lookahead as well as spectrogram buffer
    # handling, i.e. via a ring buffer. Could be used in real time usage.
    dfop.set_forward("real_one_step")
    spec_padded = spec_pad(spec, o, d, dim=-3)
    out5 = torch.zeros_like(out1)
    for i in range(t):
        out5[:, :, i] = dfop(
            spec_padded[:, :, i : i + o], coefs[:, i].unsqueeze(1), alpha[:, i].unsqueeze(1)
        )
    torch.testing.assert_allclose(out1, out5)
    # Forward method that does the padding/lookahead handling using an internal hidden state.
    dfop.freq_bins = F
    dfop.set_forward("real_hidden_state_loop")
    out6 = dfop(spec, coefs, alpha)
    torch.testing.assert_allclose(out1, out6)