File size: 12,879 Bytes
fc5ed00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35916c5
fc5ed00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74258c0
fc5ed00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

# load the libraries for the application
# -------------------------------------------
import os
import re
import nltk
import torch
import librosa
import tempfile
import subprocess

import gradio as gr

from scipy.io import wavfile
from nnet import utils, commons
from transformers import pipeline
from scipy.io.wavfile import write
from faster_whisper import WhisperModel
from nnet.models import SynthesizerTrn as vitsTRN
from nnet.models_vc import SynthesizerTrn as freeTRN
from nnet.mel_processing import mel_spectrogram_torch
from configurations.get_constants import constantConfig

from speaker_encoder.voice_encoder import SpeakerEncoder

from df_local.enhance import enhance, init_df, load_audio, save_audio
from configurations.get_hyperparameters import hyperparameterConfig
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

nltk.download('punkt')
from nltk.tokenize import sent_tokenize

# making the FreeVC function
# ---------------------------------
class FreeVCModel:
    def __init__(self, config, ptfile, speaker_model, wavLM_model, device='cpu'):
        self.hps = utils.get_hparams_from_file(config)

        self.net_g = freeTRN(
            self.hps.data.filter_length // 2 + 1,
            self.hps.train.segment_size // self.hps.data.hop_length,
            **self.hps.model
        ).to(hyperparameters.device)
        _ = self.net_g.eval()
        _ = utils.load_checkpoint(ptfile, self.net_g, None, True)
        
        self.cmodel = utils.get_cmodel(device, wavLM_model)

        if self.hps.model.use_spk:
            self.smodel = SpeakerEncoder(speaker_model)

    def convert(self, src, tgt):
        fs_src, src_audio = src
        fs_tgt, tgt_audio = tgt

        src = f"{constants.temp_audio_folder}/src.wav"
        tgt = f"{constants.temp_audio_folder}/tgt.wav"
        out = f"{constants.temp_audio_folder}/cnvr.wav"
        with torch.no_grad():
            wavfile.write(tgt, fs_tgt, tgt_audio)
            wav_tgt, _ = librosa.load(tgt, sr=self.hps.data.sampling_rate)
            wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
            if self.hps.model.use_spk:
                g_tgt = self.smodel.embed_utterance(wav_tgt)
                g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(hyperparameters.device.type)
            else:
                wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(hyperparameters.device.type)
                mel_tgt = mel_spectrogram_torch(
                    wav_tgt,
                    self.hps.data.filter_length,
                    self.hps.data.n_mel_channels,
                    self.hps.data.sampling_rate,
                    self.hps.data.hop_length,
                    self.hps.data.win_length,
                    self.hps.data.mel_fmin,
                    self.hps.data.mel_fmax,
                )
            wavfile.write(src, fs_src, src_audio)
            wav_src, _ = librosa.load(src, sr=self.hps.data.sampling_rate)
            wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(hyperparameters.device.type)
            c = utils.get_content(self.cmodel, wav_src)

            if self.hps.model.use_spk:
                audio = self.net_g.infer(c, g=g_tgt)
            else:
                audio = self.net_g.infer(c, mel=mel_tgt)
            audio = audio[0][0].data.cpu().float().numpy()
            write(out, 24000, audio)

            return out

# load the system configurations
constants       = constantConfig()
hyperparameters = hyperparameterConfig()

# load the models
model, df_state, _  = init_df(hyperparameters.voice_enhacing_model, config_allow_defaults=True) # voice enhancing model
stt_model           = WhisperModel(hyperparameters.stt_model, device=hyperparameters.device.type, compute_type="float32") #speech to text model

trans_model     = AutoModelForSeq2SeqLM.from_pretrained(constants.model_name_dict[hyperparameters.nllb_model], torch_dtype=torch.bfloat16).to(hyperparameters.device)
trans_tokenizer = AutoTokenizer.from_pretrained(constants.model_name_dict[hyperparameters.nllb_model])

modelConvertSpeech = FreeVCModel(config=hyperparameters.text2speech_config, ptfile=hyperparameters.text2speech_model,
                                 speaker_model=hyperparameters.text2speech_encoder, wavLM_model=hyperparameters.wavlm_model,
                                 device=hyperparameters.device.type)

# download the language model if doesn't existing
# ----------------------------------------------------
def download(lang, lang_directory):
    
    if not os.path.exists(f"{lang_directory}/{lang}"):
        cmd = ";".join([
                f"wget {constants.language_download_web}/{lang}.tar.gz -O {lang_directory}/{lang}.tar.gz",
                f"tar zxvf {lang_directory}/{lang}.tar.gz -C {lang_directory}"
        ])
        subprocess.check_output(cmd, shell=True)
    try:
        os.remove(f"{lang_directory}/{lang}.tar.gz")
    except:
        pass
    return f"{lang_directory}/{lang}"

def preprocess_char(text, lang=None):
    """
    Special treatement of characters in certain languages
    """
    if lang == 'ron':
        text = text.replace("ț", "ţ")
    return text

def preprocess_text(txt, text_mapper, hps, uroman_dir=None, lang=None):
    txt = preprocess_char(txt, lang=lang)
    is_uroman = hps.data.training_files.split('.')[-1] == 'uroman'
    if is_uroman:
        txt  = text_mapper.uromanize(txt, f'{uroman_dir}/bin/uroman.pl')
            
    txt = txt.lower()
    txt = text_mapper.filter_oov(txt)
    return txt

def detect_language(text,LID):
    predictions = LID.predict(text)
    detected_lang_code = predictions[0][0].replace("__label__", "")
    return detected_lang_code

# text to speech
class TextMapper(object):
    def __init__(self, vocab_file):
        self.symbols = [x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()]
        self.SPACE_ID = self.symbols.index(" ")
        self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
        self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}

    def text_to_sequence(self, text, cleaner_names):
        '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
        Args:
        text: string to convert to a sequence
        cleaner_names: names of the cleaner functions to run the text through
        Returns:
        List of integers corresponding to the symbols in the text
        '''
        sequence = []
        clean_text = text.strip()
        for symbol in clean_text:
            symbol_id = self._symbol_to_id[symbol]
            sequence += [symbol_id]
        return sequence
    
    def uromanize(self, text, uroman_pl):
        with tempfile.NamedTemporaryFile() as tf, \
             tempfile.NamedTemporaryFile() as tf2:
            with open(tf.name, "w") as f:
                f.write("\n".join([text]))
            cmd = f"perl " + uroman_pl
            cmd += f" -l xxx "
            cmd +=  f" < {tf.name} > {tf2.name}"
            os.system(cmd)
            outtexts = []
            with open(tf2.name) as f:
                for line in f:
                    line =  re.sub(r"\s+", " ", line).strip()
                    outtexts.append(line)
            outtext = outtexts[0]
        return outtext

    def get_text(self, text, hps):
        text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
        if hps.data.add_blank:
            text_norm = commons.intersperse(text_norm, 0)
        text_norm = torch.LongTensor(text_norm)
        return text_norm
    
    def filter_oov(self, text):
        val_chars = self._symbol_to_id
        txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
        return txt_filt

def speech_to_text(audio_file):
    try:
        fs, audio = audio_file
        wavfile.write(constants.input_speech_file, fs, audio)
        audio0, _ = load_audio(constants.input_speech_file, sr=df_state.sr())

        # Enhance the SNR of the audio
        enhanced = enhance(model, df_state, audio0)
        save_audio(constants.enhanced_speech_file, enhanced, df_state.sr())

        segments, info = stt_model.transcribe(constants.enhanced_speech_file)

        speech_text = ''
        for segment in segments:
            speech_text = f'{speech_text}{segment.text}'
        try:
            source_lang_nllb = [k for k, v in constants.flores_codes_to_tts_codes.items() if v[:2] == info.language][0]
        except:
            source_lang_nllb = 'language cant be determined, select manually'
        
        # text translation
        return speech_text, gr.Dropdown.update(value=source_lang_nllb)
    except:
        return '', gr.Dropdown.update(value='English')

# Text tp speech
def text_to_speech(text, target_lang):
    txt = text

    # LANG = get_target_tts_lang(target_lang)
    LANG = constants.flores_codes_to_tts_codes[target_lang]
    ckpt_dir = download(LANG, lang_directory=constants.language_directory)

    vocab_file  = f"{ckpt_dir}/{constants.language_vocab_text}"
    config_file = f"{ckpt_dir}/{constants.language_vocab_configuration}"
    hps = utils.get_hparams_from_file(config_file)
    text_mapper = TextMapper(vocab_file)
    net_g = vitsTRN(
        len(text_mapper.symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        **hps.model)
    net_g.to(hyperparameters.device)
    _ = net_g.eval()

    g_pth = f"{ckpt_dir}/{constants.language_vocab_model}"

    _ = utils.load_checkpoint(g_pth, net_g, None)

    txt = preprocess_text(txt, text_mapper, hps, lang=LANG, uroman_dir=constants.uroman_directory)
    stn_tst = text_mapper.get_text(txt, hps)
    with torch.no_grad():
        x_tst = stn_tst.unsqueeze(0).to(hyperparameters.device)
        x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(hyperparameters.device)
        hyp = net_g.infer(
            x_tst, x_tst_lengths, noise_scale=.667,
            noise_scale_w=0.8, length_scale=1.0
        )[0][0,0].cpu().float().numpy()

    return hps.data.sampling_rate, hyp

def translation(audio, text, source_lang_nllb, target_code_nllb, output_type, sentence_mode):
    target_code    = constants.flores_codes[target_code_nllb]
    translator     = pipeline('translation', model=trans_model, tokenizer=trans_tokenizer, src_lang=source_lang_nllb, tgt_lang=target_code, device=hyperparameters.device)

    # output = translator(text, max_length=400)[0]['translation_text']
    if sentence_mode == "Sentence-wise":
        sentences = sent_tokenize(text)
        translated_sentences = []
        for sentence in sentences:
            translated_sentence = translator(sentence, max_length=400)[0]['translation_text']
            translated_sentences.append(translated_sentence)
        output = ' '.join(translated_sentences)
    else:
        output = translator(text, max_length=1024)[0]['translation_text']

    # get the text to speech 
    fs_out, audio_out = text_to_speech(output, target_code_nllb)

    if output_type == 'own voice':
        out_file = modelConvertSpeech.convert((fs_out, audio_out), audio)
        return output, out_file

    wavfile.write(constants.text2speech_wavfile, fs_out, audio_out)
    return output, constants.text2speech_wavfile

with gr.Blocks(title = "Octopus Translation App") as octopus_translator:
    with gr.Row():
        audio_file = gr.Audio(source="microphone")
    
    with gr.Row():
        input_text  = gr.Textbox(label="Input text")
        source_language     = gr.Dropdown(list(constants.flores_codes.keys()), value='English', label='Source (Autoselected)', interactive=True)
    
    with gr.Row():
        output_text = gr.Textbox(label='Translated text')
        target_language  = gr.Dropdown(list(constants.flores_codes.keys()), value='German', label='Target', interactive=True)
    
    
    with gr.Row():
        output_speech = gr.Audio(label='Translated speech')
        translate_button = gr.Button('Translate')

    
    with gr.Row():
        enhance_audio       = gr.Radio(['yes', 'no'], value='yes', label='Enhance input voice', interactive=True)
        input_type          = gr.Radio(['Whole text', 'Sentence-wise'],value='Sentence-wise', label="Translation Mode", interactive=True)
        output_audio_type   = gr.Radio(['standard speaker', 'voice transfer'], value='voice transfer', label='Enhance output voice', interactive=True)

    audio_file.change(speech_to_text,
                      inputs=[audio_file],
                      outputs=[input_text, source_language])

    translate_button.click(translation,
                           inputs=[audio_file, input_text, 
                                   source_language, target_language, 
                                   output_audio_type, input_type],
                           outputs=[output_text, output_speech])

octopus_translator.launch(share=False)