Spaces:
Runtime error
Runtime error
File size: 34,940 Bytes
fc5ed00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
import math
from collections import OrderedDict
from typing import Callable, Iterable, List, Optional, Tuple, Union
import numpy as np
import torch
from torch import Tensor, nn
from torch.nn import functional as F
from torch.nn import init
from torch.nn.parameter import Parameter
from typing_extensions import Final
from df.model import ModelParams
from df.utils import as_complex, as_real, get_device, get_norm_alpha
from libdf import unit_norm_init
class Conv2dNormAct(nn.Sequential):
def __init__(
self,
in_ch: int,
out_ch: int,
kernel_size: Union[int, Iterable[int]],
fstride: int = 1,
dilation: int = 1,
fpad: bool = True,
bias: bool = True,
separable: bool = False,
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
):
"""Causal Conv2d by delaying the signal for any lookahead.
Expected input format: [B, C, T, F]
"""
lookahead = 0 # This needs to be handled on the input feature side
# Padding on time axis
kernel_size = (
(kernel_size, kernel_size) if isinstance(kernel_size, int) else tuple(kernel_size)
)
if fpad:
fpad_ = kernel_size[1] // 2 + dilation - 1
else:
fpad_ = 0
pad = (0, 0, kernel_size[0] - 1 - lookahead, lookahead)
layers = []
if any(x > 0 for x in pad):
layers.append(nn.ConstantPad2d(pad, 0.0))
groups = math.gcd(in_ch, out_ch) if separable else 1
if groups == 1:
separable = False
if max(kernel_size) == 1:
separable = False
layers.append(
nn.Conv2d(
in_ch,
out_ch,
kernel_size=kernel_size,
padding=(0, fpad_),
stride=(1, fstride), # Stride over time is always 1
dilation=(1, dilation), # Same for dilation
groups=groups,
bias=bias,
)
)
if separable:
layers.append(nn.Conv2d(out_ch, out_ch, kernel_size=1, bias=False))
if norm_layer is not None:
layers.append(norm_layer(out_ch))
if activation_layer is not None:
layers.append(activation_layer())
super().__init__(*layers)
class ConvTranspose2dNormAct(nn.Sequential):
def __init__(
self,
in_ch: int,
out_ch: int,
kernel_size: Union[int, Tuple[int, int]],
fstride: int = 1,
dilation: int = 1,
fpad: bool = True,
bias: bool = True,
separable: bool = False,
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
):
"""Causal ConvTranspose2d.
Expected input format: [B, C, T, F]
"""
# Padding on time axis, with lookahead = 0
lookahead = 0 # This needs to be handled on the input feature side
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
if fpad:
fpad_ = kernel_size[1] // 2
else:
fpad_ = 0
pad = (0, 0, kernel_size[0] - 1 - lookahead, lookahead)
layers = []
if any(x > 0 for x in pad):
layers.append(nn.ConstantPad2d(pad, 0.0))
groups = math.gcd(in_ch, out_ch) if separable else 1
if groups == 1:
separable = False
layers.append(
nn.ConvTranspose2d(
in_ch,
out_ch,
kernel_size=kernel_size,
padding=(kernel_size[0] - 1, fpad_ + dilation - 1),
output_padding=(0, fpad_),
stride=(1, fstride), # Stride over time is always 1
dilation=(1, dilation),
groups=groups,
bias=bias,
)
)
if separable:
layers.append(nn.Conv2d(out_ch, out_ch, kernel_size=1, bias=False))
if norm_layer is not None:
layers.append(norm_layer(out_ch))
if activation_layer is not None:
layers.append(activation_layer())
super().__init__(*layers)
def convkxf(
in_ch: int,
out_ch: Optional[int] = None,
k: int = 1,
f: int = 3,
fstride: int = 2,
lookahead: int = 0,
batch_norm: bool = False,
act: nn.Module = nn.ReLU(inplace=True),
mode="normal", # must be "normal", "transposed" or "upsample"
depthwise: bool = True,
complex_in: bool = False,
):
bias = batch_norm is False
assert f % 2 == 1
stride = 1 if f == 1 else (1, fstride)
if out_ch is None:
out_ch = in_ch * 2 if mode == "normal" else in_ch // 2
fpad = (f - 1) // 2
convpad = (0, fpad)
modules = []
# Manually pad for time axis kernel to not introduce delay
pad = (0, 0, k - 1 - lookahead, lookahead)
if any(p > 0 for p in pad):
modules.append(("pad", nn.ConstantPad2d(pad, 0.0)))
if depthwise:
groups = min(in_ch, out_ch)
else:
groups = 1
if in_ch % groups != 0 or out_ch % groups != 0:
groups = 1
if complex_in and groups % 2 == 0:
groups //= 2
convkwargs = {
"in_channels": in_ch,
"out_channels": out_ch,
"kernel_size": (k, f),
"stride": stride,
"groups": groups,
"bias": bias,
}
if mode == "normal":
modules.append(("sconv", nn.Conv2d(padding=convpad, **convkwargs)))
elif mode == "transposed":
# Since pytorch's transposed conv padding does not correspond to the actual padding but
# rather the padding that was used in the encoder conv, we need to set time axis padding
# according to k. E.g., this disables the padding for k=2:
# dilation - (k - 1) - padding
# = 1 - (2 - 1) - 1 = 0; => padding = fpad (=1 for k=2)
padding = (k - 1, fpad)
modules.append(
("sconvt", nn.ConvTranspose2d(padding=padding, output_padding=convpad, **convkwargs))
)
elif mode == "upsample":
modules.append(("upsample", FreqUpsample(fstride)))
convkwargs["stride"] = 1
modules.append(("sconv", nn.Conv2d(padding=convpad, **convkwargs)))
else:
raise NotImplementedError()
if groups > 1:
modules.append(("1x1conv", nn.Conv2d(out_ch, out_ch, 1, bias=False)))
if batch_norm:
modules.append(("norm", nn.BatchNorm2d(out_ch)))
modules.append(("act", act))
return nn.Sequential(OrderedDict(modules))
class FreqUpsample(nn.Module):
def __init__(self, factor: int, mode="nearest"):
super().__init__()
self.f = float(factor)
self.mode = mode
def forward(self, x: Tensor) -> Tensor:
return F.interpolate(x, scale_factor=[1.0, self.f], mode=self.mode)
def erb_fb(widths: np.ndarray, sr: int, normalized: bool = True, inverse: bool = False) -> Tensor:
n_freqs = int(np.sum(widths))
all_freqs = torch.linspace(0, sr // 2, n_freqs + 1)[:-1]
b_pts = np.cumsum([0] + widths.tolist()).astype(int)[:-1]
fb = torch.zeros((all_freqs.shape[0], b_pts.shape[0]))
for i, (b, w) in enumerate(zip(b_pts.tolist(), widths.tolist())):
fb[b : b + w, i] = 1
# Normalize to constant energy per resulting band
if inverse:
fb = fb.t()
if not normalized:
fb /= fb.sum(dim=1, keepdim=True)
else:
if normalized:
fb /= fb.sum(dim=0)
return fb.to(device=get_device())
class Mask(nn.Module):
def __init__(self, erb_inv_fb: Tensor, post_filter: bool = False, eps: float = 1e-12):
super().__init__()
self.erb_inv_fb: Tensor
self.register_buffer("erb_inv_fb", erb_inv_fb)
self.clamp_tensor = torch.__version__ > "1.9.0" or torch.__version__ == "1.9.0"
self.post_filter = post_filter
self.eps = eps
def pf(self, mask: Tensor, beta: float = 0.02) -> Tensor:
"""Post-Filter proposed by Valin et al. [1].
Args:
mask (Tensor): Real valued mask, typically of shape [B, C, T, F].
beta: Global gain factor.
Refs:
[1]: Valin et al.: A Perceptually-Motivated Approach for Low-Complexity, Real-Time Enhancement of Fullband Speech.
"""
mask_sin = mask * torch.sin(np.pi * mask / 2)
mask_pf = (1 + beta) * mask / (1 + beta * mask.div(mask_sin.clamp_min(self.eps)).pow(2))
return mask_pf
def forward(self, spec: Tensor, mask: Tensor, atten_lim: Optional[Tensor] = None) -> Tensor:
# spec (real) [B, 1, T, F, 2], F: freq_bins
# mask (real): [B, 1, T, Fe], Fe: erb_bins
# atten_lim: [B]
if not self.training and self.post_filter:
mask = self.pf(mask)
if atten_lim is not None:
# dB to amplitude
atten_lim = 10 ** (-atten_lim / 20)
# Greater equal (__ge__) not implemented for TorchVersion.
if self.clamp_tensor:
# Supported by torch >= 1.9
mask = mask.clamp(min=atten_lim.view(-1, 1, 1, 1))
else:
m_out = []
for i in range(atten_lim.shape[0]):
m_out.append(mask[i].clamp_min(atten_lim[i].item()))
mask = torch.stack(m_out, dim=0)
mask = mask.matmul(self.erb_inv_fb) # [B, 1, T, F]
return spec * mask.unsqueeze(4)
class ExponentialUnitNorm(nn.Module):
"""Unit norm for a complex spectrogram.
This should match the rust code:
```rust
for (x, s) in xs.iter_mut().zip(state.iter_mut()) {
*s = x.norm() * (1. - alpha) + *s * alpha;
*x /= s.sqrt();
}
```
"""
alpha: Final[float]
eps: Final[float]
def __init__(self, alpha: float, num_freq_bins: int, eps: float = 1e-14):
super().__init__()
self.alpha = alpha
self.eps = eps
self.init_state: Tensor
s = torch.from_numpy(unit_norm_init(num_freq_bins)).view(1, 1, num_freq_bins, 1)
self.register_buffer("init_state", s)
def forward(self, x: Tensor) -> Tensor:
# x: [B, C, T, F, 2]
b, c, t, f, _ = x.shape
x_abs = x.square().sum(dim=-1, keepdim=True).clamp_min(self.eps).sqrt()
state = self.init_state.clone().expand(b, c, f, 1)
out_states: List[Tensor] = []
for t in range(t):
state = x_abs[:, :, t] * (1 - self.alpha) + state * self.alpha
out_states.append(state)
return x / torch.stack(out_states, 2).sqrt()
class DfOp(nn.Module):
df_order: Final[int]
df_bins: Final[int]
df_lookahead: Final[int]
freq_bins: Final[int]
def __init__(
self,
df_bins: int,
df_order: int = 5,
df_lookahead: int = 0,
method: str = "complex_strided",
freq_bins: int = 0,
):
super().__init__()
self.df_order = df_order
self.df_bins = df_bins
self.df_lookahead = df_lookahead
self.freq_bins = freq_bins
self.set_forward(method)
def set_forward(self, method: str):
# All forward methods should be mathematically similar.
# DeepFilterNet results are obtained with 'real_unfold'.
forward_methods = {
"real_loop": self.forward_real_loop,
"real_strided": self.forward_real_strided,
"real_unfold": self.forward_real_unfold,
"complex_strided": self.forward_complex_strided,
"real_one_step": self.forward_real_no_pad_one_step,
"real_hidden_state_loop": self.forward_real_hidden_state_loop,
}
if method not in forward_methods.keys():
raise NotImplementedError(f"`method` must be one of {forward_methods.keys()}")
if method == "real_hidden_state_loop":
assert self.freq_bins >= self.df_bins
self.spec_buf: Tensor
# Currently only designed for batch size of 1
self.register_buffer(
"spec_buf", torch.zeros(1, 1, self.df_order, self.freq_bins, 2), persistent=False
)
self.forward = forward_methods[method]
def forward_real_loop(
self, spec: Tensor, coefs: Tensor, alpha: Optional[Tensor] = None
) -> Tensor:
# Version 0: Manual loop over df_order, maybe best for onnx export?
b, _, t, _, _ = spec.shape
f = self.df_bins
padded = spec_pad(
spec[..., : self.df_bins, :].squeeze(1), self.df_order, self.df_lookahead, dim=-3
)
spec_f = torch.zeros((b, t, f, 2), device=spec.device)
for i in range(self.df_order):
spec_f[..., 0] += padded[:, i : i + t, ..., 0] * coefs[:, :, i, :, 0]
spec_f[..., 0] -= padded[:, i : i + t, ..., 1] * coefs[:, :, i, :, 1]
spec_f[..., 1] += padded[:, i : i + t, ..., 1] * coefs[:, :, i, :, 0]
spec_f[..., 1] += padded[:, i : i + t, ..., 0] * coefs[:, :, i, :, 1]
return assign_df(spec, spec_f.unsqueeze(1), self.df_bins, alpha)
def forward_real_strided(
self, spec: Tensor, coefs: Tensor, alpha: Optional[Tensor] = None
) -> Tensor:
# Version1: Use as_strided instead of unfold
# spec (real) [B, 1, T, F, 2], O: df_order
# coefs (real) [B, T, O, F, 2]
# alpha (real) [B, T, 1]
padded = as_strided(
spec[..., : self.df_bins, :].squeeze(1), self.df_order, self.df_lookahead, dim=-3
)
# Complex numbers are not supported by onnx
re = padded[..., 0] * coefs[..., 0]
re -= padded[..., 1] * coefs[..., 1]
im = padded[..., 1] * coefs[..., 0]
im += padded[..., 0] * coefs[..., 1]
spec_f = torch.stack((re, im), -1).sum(2)
return assign_df(spec, spec_f.unsqueeze(1), self.df_bins, alpha)
def forward_real_unfold(
self, spec: Tensor, coefs: Tensor, alpha: Optional[Tensor] = None
) -> Tensor:
# Version2: Unfold
# spec (real) [B, 1, T, F, 2], O: df_order
# coefs (real) [B, T, O, F, 2]
# alpha (real) [B, T, 1]
padded = spec_pad(
spec[..., : self.df_bins, :].squeeze(1), self.df_order, self.df_lookahead, dim=-3
)
padded = padded.unfold(dimension=1, size=self.df_order, step=1) # [B, T, F, 2, O]
padded = padded.permute(0, 1, 4, 2, 3)
spec_f = torch.empty_like(padded)
spec_f[..., 0] = padded[..., 0] * coefs[..., 0] # re1
spec_f[..., 0] -= padded[..., 1] * coefs[..., 1] # re2
spec_f[..., 1] = padded[..., 1] * coefs[..., 0] # im1
spec_f[..., 1] += padded[..., 0] * coefs[..., 1] # im2
spec_f = spec_f.sum(dim=2)
return assign_df(spec, spec_f.unsqueeze(1), self.df_bins, alpha)
def forward_complex_strided(
self, spec: Tensor, coefs: Tensor, alpha: Optional[Tensor] = None
) -> Tensor:
# Version3: Complex strided; definatly nicest, no permute, no indexing, but complex gradient
# spec (real) [B, 1, T, F, 2], O: df_order
# coefs (real) [B, T, O, F, 2]
# alpha (real) [B, T, 1]
padded = as_strided(
spec[..., : self.df_bins, :].squeeze(1), self.df_order, self.df_lookahead, dim=-3
)
spec_f = torch.sum(torch.view_as_complex(padded) * torch.view_as_complex(coefs), dim=2)
spec_f = torch.view_as_real(spec_f)
return assign_df(spec, spec_f.unsqueeze(1), self.df_bins, alpha)
def forward_real_no_pad_one_step(
self, spec: Tensor, coefs: Tensor, alpha: Optional[Tensor] = None
) -> Tensor:
# Version4: Only viable for onnx handling. `spec` needs external (ring-)buffer handling.
# Thus, time steps `t` must be equal to `df_order`.
# spec (real) [B, 1, O, F', 2]
# coefs (real) [B, 1, O, F, 2]
assert (
spec.shape[2] == self.df_order
), "This forward method needs spectrogram buffer with `df_order` time steps as input"
assert coefs.shape[1] == 1, "This forward method is only valid for 1 time step"
sre, sim = spec[..., : self.df_bins, :].split(1, -1)
cre, cim = coefs.split(1, -1)
outr = torch.sum(sre * cre - sim * cim, dim=2).squeeze(-1)
outi = torch.sum(sre * cim + sim * cre, dim=2).squeeze(-1)
spec_f = torch.stack((outr, outi), dim=-1)
return assign_df(
spec[:, :, self.df_order - self.df_lookahead - 1],
spec_f.unsqueeze(1),
self.df_bins,
alpha,
)
def forward_real_hidden_state_loop(self, spec: Tensor, coefs: Tensor, alpha: Tensor) -> Tensor:
# Version5: Designed for onnx export. `spec` buffer handling is done via a torch buffer.
# spec (real) [B, 1, T, F', 2]
# coefs (real) [B, T, O, F, 2]
b, _, t, _, _ = spec.shape
spec_out = torch.empty((b, 1, t, self.freq_bins, 2), device=spec.device)
for t in range(spec.shape[2]):
self.spec_buf = self.spec_buf.roll(-1, dims=2)
self.spec_buf[:, :, -1] = spec[:, :, t]
sre, sim = self.spec_buf[..., : self.df_bins, :].split(1, -1)
cre, cim = coefs[:, t : t + 1].split(1, -1)
outr = torch.sum(sre * cre - sim * cim, dim=2).squeeze(-1)
outi = torch.sum(sre * cim + sim * cre, dim=2).squeeze(-1)
spec_f = torch.stack((outr, outi), dim=-1)
spec_out[:, :, t] = assign_df(
self.spec_buf[:, :, self.df_order - self.df_lookahead - 1].unsqueeze(2),
spec_f.unsqueeze(1),
self.df_bins,
alpha[:, t],
).squeeze(2)
return spec_out
def assign_df(spec: Tensor, spec_f: Tensor, df_bins: int, alpha: Optional[Tensor]):
spec_out = spec.clone()
if alpha is not None:
b = spec.shape[0]
alpha = alpha.view(b, 1, -1, 1, 1)
spec_out[..., :df_bins, :] = spec_f * alpha + spec[..., :df_bins, :] * (1 - alpha)
else:
spec_out[..., :df_bins, :] = spec_f
return spec_out
def spec_pad(x: Tensor, window_size: int, lookahead: int, dim: int = 0) -> Tensor:
pad = [0] * x.dim() * 2
if dim >= 0:
pad[(x.dim() - dim - 1) * 2] = window_size - lookahead - 1
pad[(x.dim() - dim - 1) * 2 + 1] = lookahead
else:
pad[(-dim - 1) * 2] = window_size - lookahead - 1
pad[(-dim - 1) * 2 + 1] = lookahead
return F.pad(x, pad)
def as_strided(x: Tensor, window_size: int, lookahead: int, step: int = 1, dim: int = 0) -> Tensor:
shape = list(x.shape)
shape.insert(dim + 1, window_size)
x = spec_pad(x, window_size, lookahead, dim=dim)
# torch.fx workaround
step = 1
stride = [x.stride(0), x.stride(1), x.stride(2), x.stride(3)]
stride.insert(dim, stride[dim] * step)
return torch.as_strided(x, shape, stride)
class GroupedGRULayer(nn.Module):
input_size: Final[int]
hidden_size: Final[int]
out_size: Final[int]
bidirectional: Final[bool]
num_directions: Final[int]
groups: Final[int]
batch_first: Final[bool]
def __init__(
self,
input_size: int,
hidden_size: int,
groups: int,
batch_first: bool = True,
bias: bool = True,
dropout: float = 0,
bidirectional: bool = False,
):
super().__init__()
assert input_size % groups == 0
assert hidden_size % groups == 0
kwargs = {
"bias": bias,
"batch_first": batch_first,
"dropout": dropout,
"bidirectional": bidirectional,
}
self.input_size = input_size // groups
self.hidden_size = hidden_size // groups
self.out_size = hidden_size
self.bidirectional = bidirectional
self.num_directions = 2 if bidirectional else 1
self.groups = groups
self.batch_first = batch_first
assert (self.hidden_size % groups) == 0, "Hidden size must be divisible by groups"
self.layers = nn.ModuleList(
(nn.GRU(self.input_size, self.hidden_size, **kwargs) for _ in range(groups))
)
def flatten_parameters(self):
for layer in self.layers:
layer.flatten_parameters()
def get_h0(self, batch_size: int = 1, device: torch.device = torch.device("cpu")):
return torch.zeros(
self.groups * self.num_directions,
batch_size,
self.hidden_size,
device=device,
)
def forward(self, input: Tensor, h0: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
# input shape: [B, T, I] if batch_first else [T, B, I], B: batch_size, I: input_size
# state shape: [G*D, B, H], where G: groups, D: num_directions, H: hidden_size
if h0 is None:
dim0, dim1 = input.shape[:2]
bs = dim0 if self.batch_first else dim1
h0 = self.get_h0(bs, device=input.device)
outputs: List[Tensor] = []
outstates: List[Tensor] = []
for i, layer in enumerate(self.layers):
o, s = layer(
input[..., i * self.input_size : (i + 1) * self.input_size],
h0[i * self.num_directions : (i + 1) * self.num_directions].detach(),
)
outputs.append(o)
outstates.append(s)
output = torch.cat(outputs, dim=-1)
h = torch.cat(outstates, dim=0)
return output, h
class GroupedGRU(nn.Module):
groups: Final[int]
num_layers: Final[int]
batch_first: Final[bool]
hidden_size: Final[int]
bidirectional: Final[bool]
num_directions: Final[int]
shuffle: Final[bool]
add_outputs: Final[bool]
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int = 1,
groups: int = 4,
bias: bool = True,
batch_first: bool = True,
dropout: float = 0,
bidirectional: bool = False,
shuffle: bool = True,
add_outputs: bool = False,
):
super().__init__()
kwargs = {
"groups": groups,
"bias": bias,
"batch_first": batch_first,
"dropout": dropout,
"bidirectional": bidirectional,
}
assert input_size % groups == 0
assert hidden_size % groups == 0
assert num_layers > 0
self.input_size = input_size
self.groups = groups
self.num_layers = num_layers
self.batch_first = batch_first
self.hidden_size = hidden_size // groups
self.bidirectional = bidirectional
self.num_directions = 2 if bidirectional else 1
if groups == 1:
shuffle = False # Fully connected, no need to shuffle
self.shuffle = shuffle
self.add_outputs = add_outputs
self.grus: List[GroupedGRULayer] = nn.ModuleList() # type: ignore
self.grus.append(GroupedGRULayer(input_size, hidden_size, **kwargs))
for _ in range(1, num_layers):
self.grus.append(GroupedGRULayer(hidden_size, hidden_size, **kwargs))
self.flatten_parameters()
def flatten_parameters(self):
for gru in self.grus:
gru.flatten_parameters()
def get_h0(self, batch_size: int, device: torch.device = torch.device("cpu")) -> Tensor:
return torch.zeros(
(self.num_layers * self.groups * self.num_directions, batch_size, self.hidden_size),
device=device,
)
def forward(self, input: Tensor, state: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
dim0, dim1, _ = input.shape
b = dim0 if self.batch_first else dim1
if state is None:
state = self.get_h0(b, input.device)
output = torch.zeros(
dim0, dim1, self.hidden_size * self.num_directions * self.groups, device=input.device
)
outstates = []
h = self.groups * self.num_directions
for i, gru in enumerate(self.grus):
input, s = gru(input, state[i * h : (i + 1) * h])
outstates.append(s)
if self.shuffle and i < self.num_layers - 1:
input = (
input.view(dim0, dim1, -1, self.groups).transpose(2, 3).reshape(dim0, dim1, -1)
)
if self.add_outputs:
output += input
else:
output = input
outstate = torch.cat(outstates, dim=0)
return output, outstate
class SqueezedGRU(nn.Module):
input_size: Final[int]
hidden_size: Final[int]
def __init__(
self,
input_size: int,
hidden_size: int,
output_size: Optional[int] = None,
num_layers: int = 1,
linear_groups: int = 8,
batch_first: bool = True,
gru_skip_op: Optional[Callable[..., torch.nn.Module]] = None,
linear_act_layer: Callable[..., torch.nn.Module] = nn.Identity,
):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.linear_in = nn.Sequential(
GroupedLinearEinsum(input_size, hidden_size, linear_groups), linear_act_layer()
)
self.gru = nn.GRU(hidden_size, hidden_size, num_layers=num_layers, batch_first=batch_first)
self.gru_skip = gru_skip_op() if gru_skip_op is not None else None
if output_size is not None:
self.linear_out = nn.Sequential(
GroupedLinearEinsum(hidden_size, output_size, linear_groups), linear_act_layer()
)
else:
self.linear_out = nn.Identity()
def forward(self, input: Tensor, h=None) -> Tuple[Tensor, Tensor]:
input = self.linear_in(input)
x, h = self.gru(input, h)
if self.gru_skip is not None:
x = x + self.gru_skip(input)
x = self.linear_out(x)
return x, h
class GroupedLinearEinsum(nn.Module):
input_size: Final[int]
hidden_size: Final[int]
groups: Final[int]
def __init__(self, input_size: int, hidden_size: int, groups: int = 1):
super().__init__()
# self.weight: Tensor
self.input_size = input_size
self.hidden_size = hidden_size
self.groups = groups
assert input_size % groups == 0
self.ws = input_size // groups
self.register_parameter(
"weight",
Parameter(
torch.zeros(groups, input_size // groups, hidden_size // groups), requires_grad=True
),
)
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) # type: ignore
def forward(self, x: Tensor) -> Tensor:
# x: [..., I]
x = x.unflatten(-1, (self.groups, self.ws)) # [..., G, I/G]
x = torch.einsum("...gi,...gih->...gh", x, self.weight) # [..., G, H/G]
x = x.flatten(2, 3) # [B, T, H]
return x
class GroupedLinear(nn.Module):
input_size: Final[int]
hidden_size: Final[int]
groups: Final[int]
shuffle: Final[bool]
def __init__(self, input_size: int, hidden_size: int, groups: int = 1, shuffle: bool = True):
super().__init__()
assert input_size % groups == 0
assert hidden_size % groups == 0
self.groups = groups
self.input_size = input_size // groups
self.hidden_size = hidden_size // groups
if groups == 1:
shuffle = False
self.shuffle = shuffle
self.layers = nn.ModuleList(
nn.Linear(self.input_size, self.hidden_size) for _ in range(groups)
)
def forward(self, x: Tensor) -> Tensor:
outputs: List[Tensor] = []
for i, layer in enumerate(self.layers):
outputs.append(layer(x[..., i * self.input_size : (i + 1) * self.input_size]))
output = torch.cat(outputs, dim=-1)
if self.shuffle:
orig_shape = output.shape
output = (
output.view(-1, self.hidden_size, self.groups).transpose(-1, -2).reshape(orig_shape)
)
return output
class LocalSnrTarget(nn.Module):
def __init__(
self, ws: int = 20, db: bool = True, ws_ns: Optional[int] = None, target_snr_range=None
):
super().__init__()
self.ws = self.calc_ws(ws)
self.ws_ns = self.ws * 2 if ws_ns is None else self.calc_ws(ws_ns)
self.db = db
self.range = target_snr_range
def calc_ws(self, ws_ms: int) -> int:
# Calculates windows size in stft domain given a window size in ms
p = ModelParams()
ws = ws_ms - p.fft_size / p.sr * 1000 # length ms of an fft_window
ws = 1 + ws / (p.hop_size / p.sr * 1000) # consider hop_size
return max(int(round(ws)), 1)
def forward(self, clean: Tensor, noise: Tensor, max_bin: Optional[int] = None) -> Tensor:
# clean: [B, 1, T, F]
# out: [B, T']
if max_bin is not None:
clean = as_complex(clean[..., :max_bin])
noise = as_complex(noise[..., :max_bin])
return (
local_snr(clean, noise, window_size=self.ws, db=self.db, window_size_ns=self.ws_ns)[0]
.clamp(self.range[0], self.range[1])
.squeeze(1)
)
def _local_energy(x: Tensor, ws: int, device: torch.device) -> Tensor:
if (ws % 2) == 0:
ws += 1
ws_half = ws // 2
x = F.pad(x.pow(2).sum(-1).sum(-1), (ws_half, ws_half, 0, 0))
w = torch.hann_window(ws, device=device, dtype=x.dtype)
x = x.unfold(-1, size=ws, step=1) * w
return torch.sum(x, dim=-1).div(ws)
def local_snr(
clean: Tensor,
noise: Tensor,
window_size: int,
db: bool = False,
window_size_ns: Optional[int] = None,
eps: float = 1e-12,
) -> Tuple[Tensor, Tensor, Tensor]:
# clean shape: [B, C, T, F]
clean = as_real(clean)
noise = as_real(noise)
assert clean.dim() == 5
E_speech = _local_energy(clean, window_size, clean.device)
window_size_ns = window_size if window_size_ns is None else window_size_ns
E_noise = _local_energy(noise, window_size_ns, clean.device)
snr = E_speech / E_noise.clamp_min(eps)
if db:
snr = snr.clamp_min(eps).log10().mul(10)
return snr, E_speech, E_noise
def test_grouped_gru():
from icecream import ic
g = 2 # groups
h = 4 # hidden_size
i = 2 # input_size
b = 1 # batch_size
t = 5 # time_steps
m = GroupedGRULayer(i, h, g, batch_first=True)
ic(m)
input = torch.randn((b, t, i))
h0 = m.get_h0(b)
assert list(h0.shape) == [g, b, h // g]
out, hout = m(input, h0)
# Should be exportable as raw nn.Module
torch.onnx.export(
m, (input, h0), "out/grouped.onnx", example_outputs=(out, hout), opset_version=13
)
# Should be exportable as traced
m = torch.jit.trace(m, (input, h0))
torch.onnx.export(
m, (input, h0), "out/grouped.onnx", example_outputs=(out, hout), opset_version=13
)
# and as scripted module
m = torch.jit.script(m)
torch.onnx.export(
m, (input, h0), "out/grouped.onnx", example_outputs=(out, hout), opset_version=13
)
# now grouped gru
num = 2
m = GroupedGRU(i, h, num, g, batch_first=True, shuffle=True)
ic(m)
h0 = m.get_h0(b)
assert list(h0.shape) == [num * g, b, h // g]
out, hout = m(input, h0)
# Should be exportable as traced
m = torch.jit.trace(m, (input, h0))
torch.onnx.export(
m, (input, h0), "out/grouped.onnx", example_outputs=(out, hout), opset_version=13
)
# and scripted module
m = torch.jit.script(m)
torch.onnx.export(
m, (input, h0), "out/grouped.onnx", example_outputs=(out, hout), opset_version=13
)
def test_erb():
import libdf
from df.config import config
config.use_defaults()
p = ModelParams()
n_freq = p.fft_size // 2 + 1
df_state = libdf.DF(sr=p.sr, fft_size=p.fft_size, hop_size=p.hop_size, nb_bands=p.nb_erb)
erb = erb_fb(df_state.erb_widths(), p.sr)
erb_inverse = erb_fb(df_state.erb_widths(), p.sr, inverse=True)
input = torch.randn((1, 1, 1, n_freq), dtype=torch.complex64)
input_abs = input.abs().square()
erb_widths = df_state.erb_widths()
df_erb = torch.from_numpy(libdf.erb(input.numpy(), erb_widths, False))
py_erb = torch.matmul(input_abs, erb)
assert torch.allclose(df_erb, py_erb)
df_out = torch.from_numpy(libdf.erb_inv(df_erb.numpy(), erb_widths))
py_out = torch.matmul(py_erb, erb_inverse)
assert torch.allclose(df_out, py_out)
def test_unit_norm():
from df.config import config
from libdf import unit_norm
config.use_defaults()
p = ModelParams()
b = 2
F = p.nb_df
t = 100
spec = torch.randn(b, 1, t, F, 2)
alpha = get_norm_alpha(log=False)
# Expects complex input of shape [C, T, F]
norm_lib = torch.as_tensor(unit_norm(torch.view_as_complex(spec).squeeze(1).numpy(), alpha))
m = ExponentialUnitNorm(alpha, F)
norm_torch = torch.view_as_complex(m(spec).squeeze(1))
assert torch.allclose(norm_lib.real, norm_torch.real)
assert torch.allclose(norm_lib.imag, norm_torch.imag)
assert torch.allclose(norm_lib.abs(), norm_torch.abs())
def test_dfop():
from df.config import config
config.use_defaults()
p = ModelParams()
f = p.nb_df
F = f * 2
o = p.df_order
d = p.df_lookahead
t = 100
spec = torch.randn(1, 1, t, F, 2)
coefs = torch.randn(1, t, o, f, 2)
alpha = torch.randn(1, t, 1)
dfop = DfOp(df_bins=p.nb_df)
dfop.set_forward("real_loop")
out1 = dfop(spec, coefs, alpha)
dfop.set_forward("real_strided")
out2 = dfop(spec, coefs, alpha)
dfop.set_forward("real_unfold")
out3 = dfop(spec, coefs, alpha)
dfop.set_forward("complex_strided")
out4 = dfop(spec, coefs, alpha)
torch.testing.assert_allclose(out1, out2)
torch.testing.assert_allclose(out1, out3)
torch.testing.assert_allclose(out1, out4)
# This forward method requires external padding/lookahead as well as spectrogram buffer
# handling, i.e. via a ring buffer. Could be used in real time usage.
dfop.set_forward("real_one_step")
spec_padded = spec_pad(spec, o, d, dim=-3)
out5 = torch.zeros_like(out1)
for i in range(t):
out5[:, :, i] = dfop(
spec_padded[:, :, i : i + o], coefs[:, i].unsqueeze(1), alpha[:, i].unsqueeze(1)
)
torch.testing.assert_allclose(out1, out5)
# Forward method that does the padding/lookahead handling using an internal hidden state.
dfop.freq_bins = F
dfop.set_forward("real_hidden_state_loop")
out6 = dfop(spec, coefs, alpha)
torch.testing.assert_allclose(out1, out6)
|