File size: 2,472 Bytes
107bbc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# METEHAN AYHAN

import streamlit as st
from PIL import Image
import numpy as np
import tensorflow as tf

model = tf.keras.models.load_model('model.h5')


classes = { 0:'Speed limit (20km/h)',
            1:'Speed limit (30km/h)',
            2:'Speed limit (50km/h)',
            3:'Speed limit (60km/h)',
            4:'Speed limit (70km/h)',
            5:'Speed limit (80km/h)',
            6:'End of speed limit (80km/h)',
            7:'Speed limit (100km/h)',
            8:'Speed limit (120km/h)',
            9:'No passing',
            10:'No passing veh over 3.5 tons',
            11:'Right-of-way at intersection',
            12:'Priority road',
            13:'Yield',
            14:'Stop',
            15:'No vehicles',
            16:'Veh > 3.5 tons prohibited',
            17:'No entry',
            18:'General caution',
            19:'Dangerous curve left',
            20:'Dangerous curve right',
            21:'Double curve',
            22:'Bumpy road',
            23:'Slippery road',
            24:'Road narrows on the right',
            25:'Road work',
            26:'Traffic signals',
            27:'Pedestrians',
            28:'Children crossing',
            29:'Bicycles crossing',
            30:'Beware of ice/snow',
            31:'Wild animals crossing',
            32:'End speed + passing limits',
            33:'Turn right ahead',
            34:'Turn left ahead',
            35:'Ahead only',
            36:'Go straight or right',
            37:'Go straight or left',
            38:'Keep right',
            39:'Keep left',
            40:'Roundabout mandatory',
            41:'End of no passing',
            42:'End no passing veh > 3.5 tons' }

st.title('German Traffic Sign Recognition - Metehan Ayhan')
st.write("Upload an image of a traffic sign to predict its class.")

uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])

if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption='Uploaded Traffic Sign.', use_column_width=True)
    st.write("")
    st.write("Classifying...")

    image = image.resize((32, 32)) 
    image = np.array(image)
    image = np.expand_dims(image, axis=0)  # Modelin beklediği şekil 
    

    predictions = model.predict(image)
    predicted_class = np.argmax(predictions[0])

  
    st.write(f"Prediction: {classes[predicted_class]}")