Spaces:
Sleeping
Sleeping
File size: 2,561 Bytes
7986652 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
# METEHAN AYHAN
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler
import streamlit as st
df = pd.read_excel('cars.xls')
x = df.drop('Price', axis=1)
y = df[['Price']]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
preprocessor = ColumnTransformer(
transformers=[
('num', StandardScaler(), ['Mileage', 'Cylinder', 'Liter', 'Doors']), #numeric columns
('cat', OneHotEncoder(), ['Make', 'Model', 'Trim', 'Type']) #categorical columns
]
)
model = LinearRegression()
pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('regressor', model)])
pipeline.fit(x_train, y_train)
pred = pipeline.predict(x_test)
rmse = mean_squared_error(pred, y_test) ** .5
r2 = r2_score(pred, y_test)
def price_pred(make, model, trim, mileage, car_type, cylinder, liter, doors, cruise, sound, leather):
input_df = pd.DataFrame({
'Make': [make],
'Model': [model],
'Trim': [trim],
'Mileage': [mileage],
'Type': [car_type],
'Cylinder': [cylinder],
'Liter': [liter],
'Doors': [doors],
'Cruise': [cruise],
'Sound': [sound],
'Leather': [leather]
})
prediction = pipeline.predict(input_df)[0]
return prediction
st.title('MLOps - Car Price Prediction :red_car:')
st.write('Enter Car Details to get the Price Prediction')
def main():
make = st.selectbox('Make', df['Make'].unique())
model = st.selectbox('Model', df[df['Make'] == make]['Model'].unique())
trim = st.selectbox('Trim', df[(df['Make'] == make) & (df['Model'] == model)]['Trim'].unique())
mileage = st.number_input('Mileage', 200, 60000)
car_type = st.selectbox('Type', df['Type'].unique())
cylinder = st.selectbox('Cylinder', df['Cylinder'].unique())
liter = st.number_input('Liter', 1,6)
doors = st.selectbox('Doors', df['Doors'].unique())
cruise = st.radio('Cruise',[0,1])
sound = st.radio('Sound',[0,1])
leather = st.radio('Leather',[0,1])
if st.button('Predict'):
price = price_pred(make, model, trim, mileage, car_type, cylinder, liter, doors, cruise, sound, leather)
price = float(price)
st.write(f'The predicted price is : ${price:.2f}')
if __name__ == '__main__':
main()
|