File size: 6,244 Bytes
fee8f50 a38e13d fee8f50 e22d664 fee8f50 a38e13d fee8f50 e22d664 a38e13d e22d664 a38e13d e22d664 fee8f50 e22d664 a38e13d 24d4f12 a38e13d fee8f50 ac7a85c e22d664 fee8f50 0822410 a38e13d 4b8f341 a38e13d 0822410 a38e13d fee8f50 0822410 a38e13d 0822410 a38e13d 0822410 a38e13d 0822410 a551fbc 0822410 a38e13d a551fbc 0822410 a38e13d 0822410 a38e13d 0822410 869a523 e22d664 ac7a85c fee8f50 e22d664 fee8f50 e22d664 fee8f50 0822410 fee8f50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
import pandas as pd
from css_html_js import custom_css
TITLE = """<h1 align="center" id="space-title">π²πΎ Malay LLM Leaderboard</h1>"""
INTRODUCTION_TEXT = """
π The π²πΎ Malay LLM Leaderboard aims to track, rank and evaluate open LLMs on Malay tasks. All notebooks at https://github.com/mesolitica/llm-benchmarks, feel free to submit your own score at https://huggingface.co/spaces/mesolitica/malay-llm-leaderboard/discussions with link to the notebook.
## Dataset
π We evaluate models based on 3 datasets,
1. BM-PT3 Paper 1, contains 54 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/BM-pt3
- This test is for 15 years old Malaysia student, it is about reading comprehension and general knowledge for malay language.
2. Tatabahasa, contains 349 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/tatabahasabm.tripod.com
- This test is general test for malay grammar.
3. Translated IndoNLI to Malay, tested on `test_expert` dataset, https://huggingface.co/datasets/mesolitica/translated-indonli
- This test is general test to language reasoning.
4. HumanEval, https://github.com/openai/human-eval
- This test is for programming language understanding.
"""
close_source = [
{
'model': 'gpt-4-1106-preview',
'BM-PT3 0-shot': 51.85185185185185,
'BM-PT3 1-shot': 66.66666666666666,
'BM-PT3 3-shots': 55.55555555555556,
'Tatabahasa 0-shot': 75.64469914040114,
'Tatabahasa 1-shot': 73.63896848137536,
'Tatabahasa 3-shots': 75.64469914040114,
},
{
'model': 'gpt-3.5-turbo-0613',
'BM-PT3 0-shot': 36.53846153846153,
'BM-PT3 1-shot': 28.846153846153843,
'BM-PT3 3-shots': 24.528301886792452,
'Tatabahasa 0-shot': 59.530791788856305,
'Tatabahasa 1-shot': 60.80691642651297,
'Tatabahasa 3-shots': 63.03724928366762,
},
{
'model': 'Antrophic Claude 2',
'Tatabahasa 0-shot': 61,
'Tatabahasa 3-shots': 57.8,
},
{
'model': 'Antrophic Claude 1',
'Tatabahasa 3-shots': 67,
},
]
open_source = [
{
'model': '[llama2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf)',
'Tatabahasa 0-shot': 24.355300859598856,
'Tatabahasa 1-shot': 28.08022922636103,
'Tatabahasa 3-shots': 24.641833810888254,
},
{
'model': '[malaysian-llama2-7b-32k](https://huggingface.co/mesolitica/llama-7b-hf-32768-fpf)',
'BM-PT3 0-shot': 20.37037037037037,
'BM-PT3 1-shot': 20.37037037037037,
'BM-PT3 3-shots': 29.629629629629626,
'Tatabahasa 0-shot': 17.765042979942695,
'Tatabahasa 1-shot': 24.068767908309454,
'Tatabahasa 3-shots': 27.507163323782237,
},
{
'model': '[malaysian-llama2-7b-32k-instructions](https://huggingface.co/mesolitica/malaysian-llama2-7b-32k-instructions)',
'BM-PT3 0-shot': 35.294117647058826,
'BM-PT3 1-shot': 21.153846153846153,
'BM-PT3 3-shots': 28.30188679245283,
},
{
'model': '[malaysian-llama2-13b-32k](https://huggingface.co/mesolitica/llama-13b-hf-32768-fpf)',
'BM-PT3 0-shot': 33.33333333333333,
'BM-PT3 1-shot': 20.37037037037037,
'BM-PT3 3-shots': 31.48148148148148,
'Tatabahasa 0-shot': 26.07449856733524,
'Tatabahasa 1-shot': 25.214899713467048,
'Tatabahasa 3-shots': 24.355300859598856,
},
{
'model': '[malaysian-llama2-13b-32k-instructions](https://huggingface.co/mesolitica/malaysian-llama2-13b-32k-instructions)',
'BM-PT3 0-shot': 28.57142857142857,
'BM-PT3 1-shot': 12.244897959183673,
'BM-PT3 3-shots': 17.307692307692307,
},
{
'model': '[mistral-7b](https://huggingface.co/mistralai/Mistral-7B-v0.1)',
'Tatabahasa 0-shot': 28.939828080229223,
'Tatabahasa 1-shot': 34.38395415472779,
'Tatabahasa 3-shots': 32.95128939828081,
},
{
'model': '[malaysian-mistral-7b-4k](https://huggingface.co/mesolitica/mistral-7b-4096-fpf)',
'BM-PT3 0-shot': 20.37037037037037,
'BM-PT3 1-shot': 22.22222222222222,
'BM-PT3 3-shots': 33.33333333333333,
'Tatabahasa 0-shot': 21.48997134670487,
'Tatabahasa 1-shot': 28.939828080229223,
'Tatabahasa 3-shots': 24.641833810888254,
},
{
'model': '[malaysian-mistral-7b-32k](https://huggingface.co/mesolitica/mistral-7b-32768-fpf)',
'BM-PT3 0-shot': 16.666666666666664,
'BM-PT3 1-shot': 16.666666666666664,
'BM-PT3 3-shots': 25.925925925925924,
'Tatabahasa 0-shot': 18.624641833810887,
'Tatabahasa 1-shot': 24.355300859598856,
'Tatabahasa 3-shots': 28.653295128939828,
},
{
'model': '[malaysian-mistral-7b-32k-instructions](https://huggingface.co/mesolitica/malaysian-mistral-7b-32k-instructions)',
'BM-PT3 0-shot': 35.18518518518518,
'BM-PT3 1-shot': 33.33333333333333,
'BM-PT3 3-shots': 37.03703703703704,
'Tatabahasa 0-shot': 48.13753581661891,
'Tatabahasa 1-shot': 38.96848137535817,
'Tatabahasa 3-shots': 33.2378223495702,
},
{
'model': '[aisingapore/sealion3b](https://huggingface.co/aisingapore/sealion3b)',
'BM-PT3 0-shot': 20.37037037037037,
'BM-PT3 1-shot': 25.925925925925924,
'BM-PT3 3-shots': 31.48148148148148,
'Tatabahasa 0-shot': 21.776504297994272,
'Tatabahasa 1-shot': 21.776504297994272,
'Tatabahasa 3-shots': 24.641833810888254,
},
{
'model': '[aisingapore/sealion7b](https://huggingface.co/aisingapore/sealion7b)',
'BM-PT3 0-shot': 20.37037037037037,
'BM-PT3 1-shot': 24.074074074074073,
'BM-PT3 3-shots': 33.33333333333333,
'Tatabahasa 0-shot': 25.787965616045845,
'Tatabahasa 1-shot': 27.507163323782237,
'Tatabahasa 3-shots': 26.07449856733524,
}
]
data = pd.DataFrame(close_source + open_source)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
gr.DataFrame(data, datatype = 'markdown')
demo.launch() |